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Fabrication of surface amine gradients by controlled-rate
infusion for chromatographic applications

Abstract

Surface gradients are materials that exhibit a variation in properties such as chemical

composition, topography etc., in a continuous and/or discrete fashion. They are broadly classified

as chemical and physical gradients depending upon the properties that gradient exhibits. Among

those, chemical gradients on various surfaces have been a great interest in materials research for

the last two decades. This is due to the applications of gradients in various fields such as

biological sciences, separation science, etc. There have been several different approaches

developed for the preparation of chemical gradients. Silane-based approaches are among those

that are widely used because of the straightforwardness of the chemistry involved and also the

availability of silanes with various chemical functionalities. A few of these silane based

approaches such as the vapor-diffusion method and liquid diffusion method have been used for

various applications so far. Most of these methods were only able to prepare surface chemical

gradients for a specific application mainly because of their limitations in terms of gradient-length

scale and chemistry involved. Hence, there is a need to develop additional procedures for the

preparation of chemical gradients that can be adaptable to different substrates and use them to

form gradients at various length-scales such as few hundred microns to tens of centimeters.

Using 3-aminopropyltriethoxysilane (APTEOS) as the precursor, a simple method was

developed to prepare surface amine gradients termed ‘controlled-rate infusion (CRI).

The CRI method involves the infusion of an organoalkoxysilane solution into a container

with a substrate mounted vertically so that time-based exposure along the substrate forms a
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gradient in chemical functionality. The most important attribute of this method is that the local

steepness of the gradient can be systematically controlled by simply changing the rate of

infusion. The steepness of the gradient can also be changed at predefined positions along its

length by programming the rate of infusion. The ability to manipulate the gradient profile is

particularly important for applications that rely on mass transport and/or those that require spatial

control of gradient properties. CRI can also be used to study the reactivity of aminoalkoxysilanes

that contain mono, di and tri amino groups and also amines with various substitutions (secondary

and tertiary amines). The gradient profiles in each case were different and correlated to their

reactivity with surface silanols. Among those aminoalkoxysilanes, ethylenediamine and

diethlenetriamine were found to be very good chelating agents to bind with metal ions. Thus,

gradients prepared with diamine and triamine were used as ligand density gradients for the

investigation of metal-amine complex formation using two different metal ions (Cu2+ and Zn2+).

The above mentioned work formed the first part of this dissertation (up to Chapter 5). The latter

part concentrates on fabrication and application of surface gradients for stationary phases for

chromatographic separation.

For the demonstration of proof-of-principle of the application of gradient stationary

phases, the CRI approach was employed to prepare continuous stationary phase gradients on HP-

TLC plates for planar chromatography.  The SiOH groups on the activated HP-TLC plates were

reacted with 3-aminopropyltriethoxysilane (APTEOS) in a time dependent fashion by using a

programmable syringe pump to control the rate of APTEOS infusion into the deposition

reservoir. The shape (profile) of the gradient was controlled by the rate of infusion and the

gradients were visualized by utilizing a concentration-dependent color formation reaction

between amine groups and ninhydrin. The advantages of such gradients in optimizing the
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retention and separation of various components in different mixtures was illustrated using

mixtures of  (i) four weak acids and bases and (ii) three widely-used over-the-counter drugs.

Thus, the gradient stationary phase was successfully fabricated and applied as a planar

chromatographic support. The next step of this research was to prepare continuous amine

gradients on silica capillaries as these would be useful in open-tubular capillary

electrochromatography for separation of complex mixtures and also to study the retention

behavior of various components. This was achieved  by carefully infusing micro-volumes of

APTEOS solution into the activated silica capillaries. To characterize these gradients, a unique

set-up was developed to measure streaming potential and zeta potential along the gradient

capillary. Since surface amine groups exist as positively charged groups at acidic and neutral

pHs, the measured zeta potential increased from the low amine end to the high amine end of the

capillary.

In summary, this dissertation work focuses mainly on the development of a simple, rapid

and cost-effective method for the preparation of surface chemical gradients. CRI has  incredible

flexibility and adaptability, which was confirmed by extending it to different substrates such as

silica TLC plates and capillary tubes for various applications. The CRI approach is not just

helpful in preparing gradients for chromatographic separations; it can be a stable platform to

study the reactivity of various precursors which could be a useful tool to develop high-

throughput surface modification procedures.
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Chapter 1: Introduction

1.1 Abstract

The primary objective of this research work is to develop a simple, straightforward and rapid

method to prepare surface chemical gradients that can be extended to applications in various

fields including biomaterials, chromatographic separations, micro separation devices etc. In this

work, the application of a new technique for stationary phase gradient preparation is the main

focus. Numerous techniques have evolved over the past 25 years for the fabrication of gradients

on chromatographic stationary phases. Such methods have generally involved complex

experimental procedures such as connecting different stationary phases in series or filling the

column with different monomer solutions followed by polymerization. Clearly, there is a need to

experimentally develop straightforward techniques to form gradients on various platforms like

planar supports, open tubular capillaries, and micro-channels etc.  In this work, we developed a

new approach called ‘controlled-rate infusion (CRI)’ that is primarily based on the time

dependent reactivity of organoalkoxysilanes with surface silanol groups on various substrates.

This chapter mainly discusses the classification and significance of surface chemical gradients. It

is followed by a discussion of various methods of gradient preparation, especially time-

controlled gradient methods using organosilanes. It is continued with a brief description of CRI

and its uniqueness relative to other methods for gradient preparation. An introduction to

stationary phase gradients for chromatographic separation and the CRI approach to prepare

stationary phase gradients on planar and open tubular capillary is then discussed including the

potential application of such gradients to electrochromatography. Finally, aminosilane reactivity
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and metal chelation gradients are also discussed before summarizing the scope of this

dissertation work.

1.2 Gradient materials

Gradient materials are materials that exhibit a variation in properties such as chemical

composition, topography etc., in a continuous or discrete fashion. There are mainly two types of

gradients according to Genzer in his detailed reviews on gradient materials:  physical gradients

and chemical gradients.1, 2 Gradual variations in physical properties such as surface roughness

and/or porosity are called physical gradients. Such gradients have found various applications in

biological sciences such as cell adhesion, etc.3-5 Even though physical gradients have found wide

range of applications, the main focus of this dissertation work is on chemical gradients..

1.2.1 Surface chemical gradients

A gradual variation of one or more chemistries along the distance of a surface is called a

“surface chemical gradient”6 These gradients can vary along the substrate in one, two or three

dimensions.1, 2 In materials research, one of the key roles of these gradients is high throughput

analysis with minimum amount of cost and time. For example, cell and protein adhesion studies

are generally performed by screening numerous samples with varying surface properties such as

wettability, and these  require considerable preparation and analysis time.6 This could be

avoided by preparing surface gradients with varying surface properties on a single platform.

Apart from the above mentioned application, gradient materials have been applied in various

areas such as chemical separations, controlled transport,7-12 polymer-templating,13

chromatographic separation14 and also as biosensors.15-18
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Surface chemical gradients are formed mainly in two different ways. Constructive

modification is a method in which one or more chemical functionality is gradually added by

varying the exposure time or concentration of precursor.6 On the other hand, in destructive

modification the surface layer is removed gradually to obtain the gradient (Figure 1.1). 6

1.3 Gradient preparation methods

As described in the previous section, gradient preparation methods can broadly classified

into two categories which are constructive and destructive modification of the surface.1, 2

Numerous methods in both the categories have been reported for the past two decades. Silane,

alkanethiol and polymer coatings are the three main types of approaches that fall under

constructive methods.1, 2, 6 The first two approaches are self-assembled monolayer (SAM) based

approaches. In the following section, gradient preparation methods based on constructive

modification will be discussed in detail along with subsections describing SAM based

alkanethiol methods, SAM based silane methods and polymer based approaches.6 Also, some

notable methods on destruction modification for gradient preparation will also be discussed.

Figure 1.1 : Constructive & destructive  modification for gradient preparation.



www.manaraa.com

4

1.3.1 Gradient preparation methods based on constructive modification

Organosilane and alkanethiols are the two major class of precursors used for the preparation

of chemical gradients in SAM-based approaches.

1.3.1A Alkanethiol based SAM approaches

Alkanethiols are the most common molecules that have been used to prepare self-assembled

monolayers.19 The strength of binding of thiol groups to gold is very large and, the lateral van

der Waals interaction between the alkyl groups also plays a major role in forming ordered

layers.20 Alkanethiols have been used as precursors in gradient preparation for almost two

decades when Leidberg and co-workers first created a gradient by allowing two different

alkanethiols to cross-diffuse from two ends of a polysaccharide-coated gold surface (Figure 1.2).

The two alkanethiol differed in their alkyl chain lengths and they were placed at two glass filters

separated by a distance of 40 mm.21 Morgenthaler et al published work on chemical gradients

using alkanethiols with various substitutions such as hydroxyl and long-chain alkyl groups on

gold substrates.22, 23 In this study, the gold substrate was immersed in the alkanethiol containing

solution in a gradual fashion to form gradient in alkyl and hydoxy terminated groups. XPS,

contact angle measurements and Infrared spectroscopy were used for gradient characterization.

Another method involves electrochemical deposition of alkanethiol by applying an electrode

potential.24, 25 The magnitude of applied potential and the distance between the electrodes

determined the width and steepness of the gradient.
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Other than diffusion and deposition, contact printing and ink-jet printing are other

mechanisms by which alkanethiol functional gradients have been prepared. A wedge-shaped

PDMS stamp with a uniform hexadecanethiol concentration was applied to the gold substrate

and the variation in thickness of the stamp determined the alkanethiol density gradients. Surface

chemical gradients prepared from alkanethiol precursors have found applications in protein and

cell adsorption,26, 27 nanoparticle attachment25, etc. The main advantages of these approaches are

their stability due to the strong interaction between thiol groups and the substrate and also their

experimental simplicity. However these methods suffer mainly because they are limited to a few

metals such as  gold, silver, and copper.

1.3.1B Silane based SAM approaches

Figure 1.2. Cross-diffusion of two different alkanethiols from two ends of
polysaccharide-coated gold surface a) top view and b) side view. (Reprinted
from Ref 21 with kind permission, Copyright. 1997). 21
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Silane-based SAM approaches became an important tool for gradient preparation when

Elwing28-30 et al and Chaoudhary7 et al, developed solvent-diffusion and vapor-diffusion

techniques, respectively (Figure 1.3 a and b). In Elwing’s approach, a chlorosilane is dissolved in

a solvent and allowed to diffuse through another solvent of a different density to create a

wettability gradient on the surface. The latter allowed the silane vapors to slowly diffuse along

the length of the substrate when the chlorosilane in paraffin slowly evaporated. Based on these

two approaches, numerous gradients, particularly in wettability, have been reported for various

applications such as droplet movement,7, 9 and protein and polymer adsorption.31, 32,

A few other notable silane based approaches are micro-scaled contact printing33 and

controlled irradiation through density filters for applications such as enzyme activity. Recently,

our collaborators developed a new method for preparing chemical gradients termed ‘infusion-

withdrawal dip-coating,’34, 35 where the composition of sol is varied with time in addition to

substrate exposure time variation. In this work, the substrate is first immersed totally into a cell

containing a tetramethoxysilane (TMOS) sol and withdrawn at a controlled rate using computer-

Figure 1.3 Silane based gradient preparation methods. a) Elwing et al liquid-liquid
diffusion method b) Chaudhary’s vapor diffusion method. (Reprinted from Ref 28 and
7 with kind permission, Copyright. 1992) 28, 7
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operated device. Meanwhile, methyltrimethoxysilane (MTMOS) sol, which contains a methyl

group, is infused in to the cell at the same rate the mixture is withdrawn simultaneously from the

cell. The solution level in the cell remains constant throughout the dip-coating, so that bottom of

the substrate is exposed to the MTMOS solution for a longer time than the top. By this

procedure, a polarity gradient was formed with the high MTMOS end more hydrophobic (Figure

1.4). Gradients prepared by this method are few tens of nanometers thick.

This procedure is capable of preparing chemical gradients of various functionalities such as

thiol, nitrile, isobutyl etc., by just varying the organosilane.

1.3.1C Polymer based constructive methods

There are numerous polymer-based approaches for the preparation of chemical gradients,

especially brush-like polymer gradients.36, 37 Corona treatment for the preparation of such

polymer brush gradients by varying the power of corona discharge is one among the common

techniques.20, 38, 39 Genzer and coworkers formed polymer gradients that exhibit a variation of

molecular weight and grafting density by simply controlling the time of radical polymerization

Figure 1.4. Infusion-withdrawal dip coating for the preparation of polarity gradients.
(Reprinted from Ref  34 with kind permission from American Chemical Society,
Copyright.2010). 34



www.manaraa.com

8

reaction at the solution/solid interface. It was accomplished by a simple set-up in which an

initiator-coated substrate is soaked in polymerization-reaction mixture and then the solution is

removed by a pump at a controlled rate (Figure 1.5).39-41 Gradients prepared by this approach

were used as biomaterials for cell adhesion and protein adsorption studies.39-41

Ionov et al have reported polymer gradients on surfaces prepared by controlling the

temperature.42-44 Gradients in protein assemblies and pH responsive polymer gradients were

prepared by this method.43, 44 Polymethylmethacrylate (PMMA) gradient surfaces were prepared

by Harris and coworkers by gradually moving the position of a photomask during the surface

photopolymerization reaction.45 In another approach, the irradiation time of photopolymerization

was varied to form biomolecules to study cellular responses.46, 47 Another constructive

modification to form polymer gradients was reported by Mei and co-workers.  In this work, a

polymerization-initiator gradient was made by gradually infusing the initiator solution to the

substrate.48 Here, the substrate used was a SAM of octadecyl groups and the defects in the

Figure 1.5. Genzer and coworker’s set up for the preparation of polymer gradients. The
initiator coated substrate is soaked gradually into the polymerization reaction mixture.
Inset : Polymerization at solution-solid interface to form polymer brush gradients.
(Reprinted from Ref 39 with kind permission, Copyright, 2005).39
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monolayer on a Silicon wafer were allowed to react with the polymer initiator in a time-based

fashion The grafting density was measured by determining the film thickness, and it varied from

20 Å to 80 Å along the gradient. Cell adhesion and protein adsorption were studied on such

gradients. In a similar fashion, i.e., by controlling the contact time of the substrate with the

monomer solution to prepare polymer brush gradients, surface density gradients in poly (2-

hydroxyethyl methacrylate) and poly (L-lysine) were prepared to study cell adhesion and protein

adsorption.48, 49 Kramer and co-workers have also used this approach to create protein density

gradients to study protein-cell interaction by controlling the reaction time of protein-nanoparticle

conjugates with the modified-substrate (Figure 1.6).50

1.3.2 Gradient preparation methods based on destructive modification

As discussed earlier, gradient methods based on destructive modification involve removal of

a surface layer from the substrate. Ruardy et al, discussed a few methods based on destructive

modification in his review.51 Most of these methods utilizes either photochemical or

electrochemical desorption of self-assembled monolayer on a polymer surface to form a surface

Figure 1.6. Set-up for the preparation of protein density gradient by infusing
nanoparticle-tagged protein in to a beaker containing substrate coated with a reactive
functional group. (Reprinted from Ref 50 with kind permission, Copyright. 2004).50
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chemical gradient. Since these methods encounter disadvantages such as limited control on

surface chemistry and roughness, these methods are relatively less common compared to

constructive modification. However, there are notable methods, such as those based on

alkanethiols, polymer coatings, etc. Electrochemical desorption of thiols on Au surface were

reported by Bohn et al, to form a gradient in surface composition. Thiol groups in a SAM were

stripped from the gold surface by applying a particular potential.24, 25, 52 These methods were

used to prepare one- and two-component gradients and found applications in cell adhesion

studies25 and in the evaluation of a new mass spectroscopic technique.52. Alkanethiol desorption

was also accomplished using a X-ray beam by controlling the exposure time of irradiation.53

Polymer-based destructive methods for gradient preparation generally allow the polymer

substrate to be exposed to radiation or an etching solution.54-57 For example, a wettability

gradient was prepared by treating a polyethylene surface with corona discharge and the  radiation

power was gradually varied along the substrate (Figure 1.7a).54 In another case, radiofrequency

discharge was used at different gas atmospheres on polymer substrates to form a wettability

gradient.55 In another example, polyvinylenecarbonate was exposed to sodium hydroxide

solution at a controlled rate. The end that was exposed for a longer time was more hydrophilic

than the other end since it had more hydroxyl groups (Figure 1.7b). The other end is rich in

carbonate groups, which is relatively more hydrophobic. Gradients prepared by these approaches

have been used to study protein adsorption and cellular responses.57
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1.3.3 Section Summary

Although the techniques discussed above based on constructive and destructive modification

have various advantages and have also found applications in various areas including biosensors,

biomimetic materials etc., none of these single methods have been reported to show all the

advantages listed below

a) Simple & straight-forward chemistry and experimental procedure.

b) Ability to control gradient profile.

c) Adaptable to prepare gradients on various substrates for applications in different fields.

d) Rapid and cost-effective.

We wanted to develop a method with all the above attributes using organoalkoxysilanes, as

some of these precursors have already been used in our research group, mainly in sol-gel

processes. As previously seen, these compounds were widely used for surface modification and,

in most cases, the hydrolysis and condensation reactions are well-known. Also, there are

numerous organoalkoxysilanes containing different chemical functionalities that are

commercially available. This will allow us to use our gradient preparation method for various

chemical functionalities, which is not as common in any of the previous methods. Since the

chemical properties and reactivities of organoalkoxysilanes form the basis of the new technique

termed ‘controlled-rate infusion’ (CRI), the chemistry and reactivity of organoalkoxysilanes will

be first discussed in the following sections to better understand this method.

Figure 1.7. Gradient preparation set-up for a) Corona-discharge on polyethylene surface with
movable sample stage and b) Solution etching of polyvinylcarbonate in a time-based contact
method. (Reprinted from Ref 54 and 55 with kind permission).54,55
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1.4 Organoalkoxysilanes

Organoalkoxysilanes are a unique class of organic-silicon compounds that contain

hydrolytically active silicon-containing functional groups.58, 59

R is non-hydrolysable moiety which can be alkyl, aryl, organo-functional or a combination

of any of these groups. R’ represents the substitution on the alkoxy groups, which are

hydrolysable and typically a methoxy or ethoxy group (OCH3 or OCH2CH3).

Organoalkoxysilanes can react with organic compounds such as epoxy resin through R groups

and inorganic substrates such as modified silica, alumina, glass, etc., through the alkoxy groups

by a series of hydrolysis and condensation reactions. Organoalkoxysilanes can act as mediators

for the coupling of organic polymers, such as epoxy resin to inorganic materials and hence they

are called as ‘silane couple agents’. They can also react with themselves and with other silanes

by similar reactions.59, 60 The hydrolysis and condensation of organoalkoxysilanes is represented

in Scheme 1.1.

R-Si-(OR’)3

Scheme 1.1. Hydrolysis and condensation reactions of organoalkoxysilane.
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The R groups in organoalkoxysilanes are often used to change the physico-chemical

properties of a surface, such as wettability61 and pKa.62 Also, R can be a reactive group that can

further undergo chemical reactions such as amidation,63 polymerization,64 etc. Examples of such

reactive groups include amino, thiol, cyano, phenyl and azide. The structures of alkoxysilanes

with a few reactive and non-reactive R groups are given in Scheme 1.2.

Scheme 1.3 shows a generalized reaction of a trialkoxysilane precursor with a substrate

having silanol groups. The alkoxy groups of trialkoxysilanes are hydrolysed to form Si-OH

containing compounds. This hydrolysis may occur during the preparation of aqueous solutions of

Scheme 1.2. Structures of organoalkoxysilanes (with reactive and
non-reactive ‘R’ groups).
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the silane or in the presence of trace moisture in the atmosphere or adsorbed on the substrates.

The rate of hydrolysis of alkoxysilanes depends on steric and inductive effects, and thus the size

of the alkoxy group (OCH3 > OCH2CH3 > OCH2CH2CH3), replacement of an alkoxy group with

an alkyl group and the presence and concentration of catalysts such as a mineral acid or base, and

temperature.

Condensation takes place concurrently with hydrolysis.  In this step, a reaction takes place

between the hydrolyzed precursor and the substrate silonol groups resulting in covalent Si-O-Si

bond formation. But before condensation, an adsorption of hydrolyzed alkoxysilanes resulting

Scheme 1.3. Hydrolysis and condensation reactions of alkoxysilane with
the substrate containing silanol groups.
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from hydrogen bonding interaction occurs between a hydroxyl group of the silane and a surface-

silanols.65 The condensation reaction occurs horizontally, as wel,l in most cases to form

polymeric siloxane structures and this can occur anytime during the process, either before or

after adsorption (Scheme 1.4).

The above factors that affect the hydrolysis rate also affect the rate of condensation.

Moreover, as the hydrolysis proceeds, the self condensation of silanetriol to form polymeric

compounds (Scheme 1.3) will also occur. The organic substituent (R) on the alkoxysilane can

also influence the rate of hydrolysis and condensation.65 For example, the amine group in 3-

aminopropyltriethoxysilane (APTEOS) can self-catalyze the rate of hydrolysis and condensation

and increase the rate of hydrolysis and condensation.66 The condensation of an aminosilane with

substrates containing silanol groups will be discussed in more detail in the following section as

these reactions play a key role in this research study.

Scheme 1.4. Schematic represents horizontal condensation with neighboring silane
on the surface.
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1.5 Reactivity of aminosilane

The hydrolysis and condensation reactions of aminoalkoxysilanes with various substrates

such as glass, silicon and silica gels have been studied using different techniques like X-ray

photoelectron spectroscopy,67 Fourier transfer-infrared spectroscopy,68, 69 and Nuclear Magnetic

Resonance Spectroscopy.66 Most of the earlier studies on the reactivity of aminosilanes have

been conducted using APTEOS.70 A general formula for the aminosilanes used in this work is

NH2-R-Si-(OR’)3 where R is a propyl in APTEOS. R’ can be either a methoxy or ethoxy group.

It contains an amino group (-NH2) that is responsible for the high reactivity of aminosilanes. The

N atom in NH2 group is also involved in hydrogen bonding with neighboring OH groups either

from surface silanol groups or from the hydrolyzed silane itself. Fourier transform infrared

spectroscopic studies suggested that once the APTEOS starts hydrolyzing, it can form a cyclic

structure by hydrogen bonding interactions.68 The reaction for this is given below in Scheme 1.5.

The amine groups in aminosilane precursors are involved in hydrogen bonding interactions

with surface silanol groups initially and then catalyze condensation to form Si-O-Si bonds.69, 71

In the case of aminosilanes containing di and triamines, the rate of the reaction is further

Scheme 1.5. 3-aminopropyltriethoxysilane hydrolyzes and forms a cyclic
structure through hydrogen bonding.
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increased and the condensation is expected to occur faster. However, alkyl substitution on the

amine nitrogen such as secondary and tertiary amines increases the steric effect on the transition

state which reduces the condensation rate relative to the primary amines.72 Since the aminosilane

reaction with substrates containing silanol groups is very rapid and straightforward, surface

modification using APTEOS has been reported on various substrates for a wide range of

applications.69, 71, 73

1.6 Controlled-rate infusion (CRI)

As discussed in the previous section, alkoxysilanes will react with surfaces containing

silanol groups. The reaction rate depends on various factors such as temperature, water-to-silane

ratio, the presence and concentration of a catalyst, etc. For alkoxysilanes that contain an amine

group(s) this reaction is very fast because the amine self-catalyzes the reaction. This is one of the

primary reasons to start with aminosilane as a precursor to form surface amine gradients using

CRI. The other major reason is that the surface amine groups can be further functionalized to

form gradients in proteins, nanoparticles, etc, Aminosilane can be used as ligands to prepare

gradients in metal-complexes on a surface.

In CRI, gradient formation is done by gradually infusing the silane solution using a syringe

pump into a vial containing the substrate.74 A simple depiction of the process is shown in figure

1.8 for the preparation of surface gradient on a planar surface. For substrates other than planar

surfaces (such as for capillary tubes), the infusion procedure is modified accordingly.
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The experimental procedure for the CRI might sound very simple and rapid. However the

key criterion for the CRI to work successfully for the gradient formation is to match the

reactivity of silane with the infusion timescale. One of the key attributes of this method

compared to other time-dependent gradient methods is the control over the gradient steepness.

This can be achieved by simply varying the infusion rates and/or the concentration of the silane.

It is expected that slower infusion rates will form shallow gradients and relatively faster rates

will form steeper gradients (Figure 1.9A). It is also possible to vary the steepness within a

gradient by programming the infusion rates (Figure 1.9B). Chapter 3 discusses the ability of CRI

to control the gradient profile by preparing gradients with various slopes. A simple kinetic model

was also described which is helpful in predicting the experimental conditions for the desired

gradient steepness.

Figure 1.8. Schematic of Controlled-Rate Infusion (CRI). (Reprinted from Ref 74 with
permission from American Chemical Society, Copyright 2011).74
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1.6.1 Substrate for gradient preparation

CRI for gradient preparation works on the principle of kinetically controlled Si-O-Si bond

formation on surfaces. So, the main criterion for the substrate in the CRI method is the presence

of reactive silanol groups.  The concentration of silanol groups found on commonly used

substrates such as silicon wafer and glass cover slips, will vary depending on the material, its

cleanliness,  consistency in cleaning procedure and also the age of the reagents used to clean the

surface (such as con. H2SO4, hydrogen peroxide, etc.,). Hence, prior to gradient deposition, a

homogenous film is first formed to provide a consistent and uniform number of reactive silanol

groups; it is named ‘base-layer’ since it forms the base for further gradient formation. The base-

layer ensures consistency when the gradient is formed on different substrates like glass

coverslips, silicon wafers, gold slides, etc. In this work, the film was made from a sol prepared

by co-hydrolyzing and co-condensing tetraethoxysilane (TEOS) and dimethyldiethoxysilane

Figure 1.9. Plot represents the effect of infusion rate on steepness of the gradient in
CRI: A) Gradients prepared with different infusion rates; B) Programmed gradients
where infusion rates are programmed within the gradient formation.
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(DMDEOS) followed by spin coating on the relevant substrate. The base-layer formation is

represented structurally in Figure 1.10.

The base-layer also serves as an additional tool to manipulate the surface properties of a

substrate via the appropriate selection of other organosilanes. For example an amine gradient on

a base-layer containing negatively charged sulfonate groups will provide a charge density

gradient from both the ends.

Figure 1.10. Base-layer formation by spin coating of a TEOS and DMDEOS sol on a
suitable substrate.

Figure 1.11. Amine gradient formation by controlled-rate infusion from dimethyl base-layer
(For clarity, only terminal groups are shown).
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Gradient formation using aminopropyltriethoxysilane on a TMOS/DMDEOS base-layer is

represented in Figure 1.11. Once the surface amine gradient was prepared on a dimethyl base-

layer, it was characterized by X-ray Photoelectron Spectroscopy (XPS) by determining N 1s

peak area along the gradient length. Also, gradient steepness was controlled by

varying/programming the infusion rates. Chapter 3.3 and 3.4 cover gradient preparation and

characterization by XPS, gradient profile control and a simple kinetic model based on APTEOS

reaction with surface silanols.

1.6.2 Attributes of CRI method

The attributes of CRI are:

i) Prepare surface chemical gradients in a rapid, simple and inexpensive method. The main

equipment used for the preparation is just a syringe pump capable of infusion. It takes

about 10 – 30 minutes to fabricate the surface amine gradients.

ii) There is an incredible control over the gradient profile which can be useful to prepare

gradient surfaces with multiple profiles.

iii) The main disadvantage of CRI is optimizing conditions for each functional

organoalkoxysilane because of the difference in reactivity in each case.

1.6.3 CRI for gradient stationary phases

With the success of amine gradient preparation on a homogenous base-layer, it was decided

to prepare such gradients on a longer scale for chromatographic applications, mainly because

i) Continuous silane-based gradients have not been studied to any extent as

chromatographic stationary phases.

ii) A wide range of alkoxysilanes with functional groups that are used as bonded
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phases in chromatography such as –CN, phenyl, amine, etc. exist.

iii) The CRI method is not only capable of preparing gradients on planar stationary phases, it

can also form gradients on open tubular surfaces and microchannels.

Since the main focus of this work is the application of CRI to form gradient stationary

phases, a brief introduction on gradients in chromatography and the significance of gradient

stationary phases are given in the next section.

1.7 Stationary phase (SP) gradients in chromatography

Separation of complex mixtures by liquid chromatography has always been a challenging

area for separation science researchers. This is mainly due to large differences in polarity and

pKa of various components present in a complex mixture. The challenge of separating such

complex mixtures into individual components has been overcome mainly by gradient elution

(e.g., a mobile phase gradient) where the eluent strength is varied during separation.75 This is in

contrast to isocratic elution where the composition of mobile phase is same throughout the

separation.  There are numerous applications of gradient elution in liquid chromatography (LC)

for the separation and quantitation of a wide range of analytes from simple compounds to

complex biological mixtures and metabolites.76-79 In spite of its ability to separate the various

components in a complex analyte mixture, there are limitations that restrict the use of gradient

elution.

Even though gradient elution has been widely used by chromatographic researchers in

various fields, liquid chromatographic (LC) method development involving gradient elution is

relatively more complex than isocratic elution, because the selectivity depends on too many

variables.80-82 In gradient elution, certain experimental parameters are very critical such as
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equilibration time83, 84 and solvent degassing, which can affect the reproducibility of retention

times. Also, gradient elution sometimes suffers from baseline shifts due to incompatibility with

bulk property detectors (e.g., refractive index detector (RID)) when the mobile phase

composition is changed.85-88 An alternate concept to changing the chemical properties of the

mobile phase is to change the chemical properties of the stationary phase along its length.89 The

variations in stationary phase gradients can be i) adsorbents such as silica, alumina etc. ii)

stationary phase bonded phase material such as butyl (C4), octadecyl (C18), amine (NH2) etc., and

iii) concentration of the bonded phase along the stationary phase.

Stationary phase gradients have been prepared on various chromatographic platforms such

as thin layer chromatography, high-performance liquid chromatography and capillary

chromatography.14 Though they are not as widely used as gradient elution, stationary phase

gradients have been studied since 1965 until very recently for various applications.90 In 1963,

Berger et al, used different adsorbents to demonstrate the first stepwise gradients in TLC

stationary phase,89 and later this approach was developed extensively by Stahl and Warren with

various improvements in preparation methods.91-93 The first continuous gradient stationary phase

in TLC was developed by Stahl and co-workers,93 in which they used a divider box with

compartments, a mixing vessel and an applicator to continuously apply various adsorbents on

TLC plates. Some other devices were also reported to reduce the complexity of the spreading

procedure.94, 95 The main disadvantage of these methods was their lack of reproducibility to give

a uniform gradient layer since the approach needs mechanical skills like spreading, mixing, etc.

Similar to those in TLC, various stationary phases have been used as a means to improve

separations in HPLC.96-98 In HPLC, gradient stationary phase gradients have been made by
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serially connecting various columns for selectivity optimization. This approach is called

‘stationary phase optimized selectivity liquid chromatography’ (SOSLC). The most important

application of this technique is liquid chromatographic (LC) method development by optimizing

the selectivity of chromatographic separation. The chromatographic parameters such as retention

factors (k) determined by SOSLC are used for the selection and optimization of chromatographic

conditions for a given mixture of analytes.98 Until now, the majority of the stationary phase

gradients reported were prepared by coupling two or more columns or packing various stationary

phases in a discrete fashion. These are discrete gradients wherein each variation along the

stationary phase has a specific boundary. The reproducibility of such a method has always been

in question and it requires skillful hands to prepare in a reproducible manner. Even though some

methods such as connecting various columns in series seem easy, when the analyte travels

through these phases it also has to encounter connections (such as tubings) between each of the

phases, leading to band broadening. In such cases, the reproducibility of certain parameters such

as retention times and peak efficiencies will be affected.  Serial gradients differ from continuous

gradients where the composition varies gradually without any specific boundary (Figure 1.12).

Figure 1.12. Continuous and discontinuous gradients.
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Currivan et al. reported continuous stationary phase gradients in capillary polymeric monoliths

prepared by photografting and copolymerization,99 which is laborious. In contrast, CRI more

straightforward than photografting and should have better control over the chemistry.

Aminopropyl bonded silica stationary phase has been used extensively for the separation of

wide variety of compounds such as sugars, pharmaceutical samples and other acidic & basic

compounds.100-105 Since amine groups are basic in nature, it is expected that aminopropyl

gradient prepared by CRI will be highly useful for the separation of analyte mixture with a wide

range of pKa values. In Chapter 6, this phenomenon is demonstrated with four compounds

whose pKa ranges from ~4.2 to 9.5. In Chapter 7, CRI was used to fabricate surface charge

density gradients on fused silica capillaries which can be used for capillary

electrochormatography.

1.8 Evaluation of aminoalkoxysilane reactivity by gradient profiles

So far, applications of gradient materials were seen in various fields such as biological

sciences, chromatography, controlled transport, etc. Here is a unique application of amine

gradients prepared by controlled rate infusion method. Apart from APTEOS, there are a number

of commercially available silanes which are widely used for surface modifications for various

purposes. It was decided to prepare surface gradients using various aminoalkoxysilanes to study

the reactivity of those silanes by using the gradient profiles. The aminoalkoxysilanes chosen for

this work are the primary amines that contain 1 (mono), 2 (di) and 3 (tri) amine groups and also

monoamines with secondary and tertiary substitutions. Gradient application of this kind (to study

the reactivity of various precursors itself) requires the technique to have certain advantages.

These are i) the chemistry involved in such reactions should be simple and straightforward so
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that the results can be directly interpreted. ii) It should not involve any complex experimental

step in the gradient formation procedure so that the interpretations are unambiguous and iii)

Lastly, there should not be any undesired reactions which might not be controlled during the

course of gradient formation. For example, if the aminosilane vapor phase co-reacts with the

substrate along with solution phase, it is difficult to control the reaction during infusion.

The controlled-rate infusion (CRI) technique obeys all the above criteria, and this study was

successfully accomplished. Gradient preparation and characterization of these gradients covered

in chapter 4. Also, the kinetic model which gives us the quantitative comparison of silane

reactivity by evaluation of rate constant values is also discussed there. Information on surface

basicity of these amine groups is an additional piece of information derived from XPS data. Two

of aminosilane (di and triamine) used in the above study can act as chelating ligands for metal

binding. Cu2+ and Zn2+ amine complex formation on di- and triamine gradients was studied

extensively and is described in Chapter 5.

1.9 Metal chelation gradients

Once the surface gradients with ethylenediamine and diethylenetriamine were successfully

prepared, it was decided to utilize the chelating property of these multidentate ligands. These

ethylenediamine and dithylenetriamine groups grafted on a stable support like silica can act as

effective chelating agents for metal complexation. Apart from direct applications of metal

complex gradients, it is considered to be an interesting phenomenon to see the different metals

binding on a gradually varying ligand concentration. A metal-amine complex gradient is

schematically represented in Figure 1.13.



www.manaraa.com

27

In this work, Cu2+ and Zn2+ complex formation was studied on continuous gradients of di

and triamine ligands with different gradient profiles.

1.10 Scope of the dissertation

Though there were many successful gradient preparation methods reported in the past two

decades, these methods were developed to target applications in a specific fields such as

biomaterials, separation science, etc. There are very few methods that can be extended on

various platforms for entirely different applications. To develop such methods, the chemical

properties of the precursor and substrate should be well-established. Also, the method should be

flexible in order to modify it for other applications. The goal of this dissertation work is to

Figure 1.13. Metal chelation gradient on di/tri amine gradient.
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develop a simple method for gradient preparation by coupling time-based methods and

capitalizing on the reactivity differences of organoalkoxysilanes. Obtaining quantitative

information on the reactivity and also to have control over the gradient profile are also key

attributes of this work.

Once the gradient preparation method was proved to be successful, the method was

extended to prepare gradients on thin layer chromatography plates and inside a fused silica

capillary tube for applications in chromatography. The method was adopted almost without any

change to prepare stationary phase gradients for planar chromatography. The fabrication and

characterization of gradients inside capillaries proved challenging.  This was mainly because the

total infusion volume was small: from sub μL to 2 uL. A small leak in the connections would

cause a huge error in the experiment. A novel streaming potential method was developed to

visualize the amine gradient inside the capillary. The CRI method is not just helpful in preparing

gradients for chromatographic separations; it can also serve as an important tool to study the

reactivity of various precursors which could be a useful tool to develop high-throughput surface

modification procedures.
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2. Characterization Techniques

2.1 Introduction

Numerous techniques have been reported for the characterization of surface chemical

gradients. In this chapter, the basic principles and experimental conditions are discussed for all

the characterization techniques involved in this dissertation work. X-ray photoelectron

spectroscopy (XPS) was used to measure the density of amine groups along the gradient surface

on Si wafers. Contact angle measurements were used to study the variation in wettability across

the surface of the gradient on a base-layer coated silicon wafer. A simple ninhydrin test was used

to visualize amine gradients on TLC plates. Streaming potential measurements and XPS were

employed to evaluate gradients on capillary tubes.

2.2 X-ray Photoelectron Spectroscopy (XPS)

XPS is a surface characterization technique that can measure elemental composition and

the chemical and electronic state of elements on the surface (typically the top 5-10 nm). X-rays

are emitted usually from a Mg or Al anode material. When a surface is irradiated by X-rays of

sufficient energy, electrons are removed from the surface atoms due to the photoelectric effect.

In Figure 2.1, a schematic of an electron is being removed from the carbon 1s orbital by X-ray

photon is depicted. When the electron is removed by an X-ray, the kinetic energy of the ejected

electron is measured and it depends on the binding energy (BE) of the electron, the energy of the

X-ray irradiation beam (hν) and the work function (ф) of the instrument.106 The binding energy

of the electron can therefore be calculated using the equation below, if the work function of the

instrument and the energy of the X-ray are known.106
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BE = hν - KE – ф

The binding energies of the electrons are characteristic of the elements and their orbitals.

Hence, it is possible to identify the various chemical components present on a surface from XPS

spectra by comparing the measured binding energy with reference values. The intensity of the

signals is proportional to the amount of a particular group or element present on the surface. This

proportionality depends on various factors such as ionization cross-section (sensitivity factor σA),

transmission function (TA) of the instrument, the inelastic mean free path (λA) and the sine of the

take-off angle (θ).106

NA = IA

(σA TA λA sin θ)

The sensitivity factor and mean free path are characteristic of each element. Therefore it is

necessary to correct for these values during quantification or when determining atomic ratios of

different elements. Also, depending on the chemical environment of an atom, the binding energy

Figure 2.1. Removal of a carbon 1s electron by photoelectric effect.
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of the electrons vary slightly, which will result in a characteristic shift of the XPS signal. This

can provide additional information about the surface composition, provided the spectrum is

acquired with high-resolution.

XPS analysis is generally performed under ultra-high vacuum to avoid collision of the

emitted electrons with the gaseous atoms and to reduce contamination of the surface from the

atmosphere. An XPS instrument consists of an X-ray source, an analyzer where the electrons are

separated based on their kinetic energy, and a detector (as shown in Figure 2.2).

The X-ray source is often an Al Kα or a Mg Kα source as they have narrow natural

bandwidths, which leads to well resolved XPS signals. Sometimes a quartz crystal is used as

monochromator to narrow the line-width before it is focused on the sample. The lens set-up is

used to focus the electrons before they reach the analyzer, where the electrons are segregated

based on their kinetic energy. The detector carries out electron counting at a particular binding

energy and results in a plot of intensity versus binding energy.

By varying the angle between the sample and analyzer (varying the take-off angle), the

sampling depth can be varied between 1 - 10 nm.107 The disadvantages of XPS are the

requirement for ultra-high vacuum, the long acquisition times and the possibility of sample

Figure 2.2. Schematic sketch of an X-ray Photoelectron Spectrometer.



www.manaraa.com

32

degradation. Apart from that, XPS has a great advantage of providing a wide range of

information regarding the surface composition of materials. Almost all the elements can be

detected and it is possible to carry out quantitative analysis. The chemical shift in XPS provides

valuable information on chemical bonds, substitutions, chemical state, etc.108 The uniformity of

one of more elements at different heights/layers is called “depth profiling”  and can be done by

XPS using ion-gun etching of the surface.109, 110

The X-ray photoelectron spectra in this work were acquired with a ThermoFisher ESCAlab

250 equipped with a radian lens, a concentric hemi-spherical analyzer and a two-dimensional

channel-plate detector. A monochromatic Al Kα source with a spot size of 500 μm was used. The

instrument was operated with 50 eV pass energy and 0.1 eV step size. To analyze the data, the

Thermo Avantage program (Version 4.33) was used. ‘Smart’ background correction was used for

the integration of all peaks. This is the type of background correction is preferred by the

Avantage software itself. It gives a ‘S-shaped’ background similar to Shirley background but it

will adjust the background positions so that they will not go above the data-curve..

2.2.1 Area normalization and peak fit.

A. N 1s peak fit

Chapter 4 discusses the application of gradient formation to study the reactivity of various

substituted aminoalkoxysilanes and evaluate the surface basicity. This was accomplished by

deducing the ratio of protonated and free amine peak in XPS using curve fitting. To perform

curve fitting using Avantage software, the N1s spectrum was loaded and the area under the peak

from ~ 306-404 eV with ‘smart’ background correction determined. Then it was curve-fitted

using Gaussian-Lorentzian (70:30) function in such a way to give a normalized chi-square value
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that was close to 1 (0.7-0.95) and the Abbe criterion was close to 0 (0.1-0.3) in order to qualify

as a good fit.  The peak fitting function used for the Gaussian-Lorentian product function is

f(x) = peak height

[1+ M(x-x0)
2/β2 exp{ (1-M) [ln2 (x-x0)

2]/ β2}

where x0 is the peak centre, β is a parameter which is 0.5 (FWHM) and M is the mixing

ratio. The value of M is 1 for a pure Lorentzian peak and 0 for Gaussian peak.

Once the N1s curve was successfully fit into two N1s peaks, the ratio of N1s peaks of protonated

and free amine was determined and plotted vs distance along the gradient to obtain information

on how the surface basicity changed along the length of the gradient.

B. Area normalization to determine the nitrogen to metal ratio

Chapter 5 describes metal-amine complex formation on ligand density gradients through

chelation. Also, the variation in metal-amine coordination number along the gradient was

investigated by determining the ratio of amine to metal surface concentration. This was achieved

by calculating the normalized area ratio of N1s to metal (Cu and Zn) 2p peak along the gradient

taking into account the sensitivity ratios as described below. In the case of Cu2+ and Zn2+ amine

gradients, the normalized areas of N1s and metal 2p peaks were obtained using the Wagner

library in the software. There are two peak libraries, Wagner and Scofield, but in both the cases

the normalized area is determined by

Normalized area  = Peak area / (SF * TF * ECF)
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SF is sensitivity factor determined from the library. The Wagner and Scofield methods use

different sensitivity factors. Wagner library is considered to be more accurate and used in this

work.111 TF is transmission function and it is a correction (for instrumental parameters) to ensure

better quantification results.  ECF is energy compensation factor and is calculated for Wagner

library as Wagner – KE1.0 and for Scofield – KE0.6 where KE is kinetic energy of the electron.

The ratio of the normalized area was plotted along the distance to obtain the profile plot.

2.3 Contact angle measurements

Contact angle measurement is a fast and simple method to evaluate surface wettability. The

angle between the solid-liquid interface and the liquid-vapor interface is referred as the contact

angle. It is represented in Figure 2.3.

A drop with a contact angle above 90° on a surface is considered to be hydrophobic and

below 90° is considered to be hydrophilic (Figure 2.4). The standard liquid used in this

measurement is water. However, other liquids such as hexadecane have been used for evaluating

oleophobicity.

Figure 2.3. Schematic sketch of a droplet on a surface for contact angle measurement.
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The way in which the contacting liquid is wetting the surface depends on the interfacial

surface tension (γ) between surface (s), liquid (l) and gas (g). It is correlated to a contact angle on

a flat surface by Young’s equation.112

The easiest of all the reported methods for measuring the contact angle is the ‘static sessile

drop method’. We have followed this method as one of the characterization methods for surface

amine gradients on a dimethyl base-layer coated silicon wafer. Contact angles were measured by

Figure 2.4. Schematic sketch of a water droplet on a hydrophobic and hydrophilic surfaces.
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a contact-angle goniometer, which contains the optical unit for capturing the liquid-drop profile

on a flat solid surface. In this work, a RameHart goniometer equipped with a high resolution

camera was used to capture the water droplet and the software called ‘DROPimage CA’ was

used to analyze the contact angle. Contact angle values in the sessile drop method can be

affected by surface roughness and drop size. But in this work, the drop size was kept constant

(~0.5 μL) throughout the measurements to avoid any such errors. Static contact angles

determined by the above mentioned method can only determine the wettability of the surface.

Roughness and other surface inhomogeneities can be determined by the ‘dynamic contact angle’

which requires a relatively sophisticated set-up compared to the static contact angle

measurements.

2.4 Visualization TLC plates-ninhydrin test

Chapter 4 describes the ability of CRI to fabricate surface amine gradients on silica TLC

plates for chromatographic separation. XPS analysis cannot be used to visualize amine groups on

TLC plates because of amount of moisture present in the porous silica particles, which is harmful

to the XPS instrument. Also, the length of the TLC plates is too long for a XPS sample holder.

So, a simple visualization method was developed using a widely used amine specific

chromogenic reagent, ninhydrin. It is considered as a universal reagent for the detection of amino

acids and primary amines especially in forensic science.113 Ninhydrin reacts with primary amino

groups to form the purple dye (Scheme 2.1) called Ruhemann’s purple (RP), which was

discovered by Siegfried Ruhemann in 1910.113 This reaction is peculiar among all chromogenic

reactions in that it results in the formation of the same soluble chromophore by all primary

amines whether they are amine, amino acid, protein etc. The intensity of color formation depends
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on the concentration of amine groups on the surface. Ninhydrin is used commonly as a spray

reagent for detection and analysis of amino acids, peptides and compounds containing amine

groups in a wide range of samples such as food, pesticides, plant extracts, etc.113

Since the silica TLC plate has aminopropyl groups, it was decided to utilize this simple

reaction to visualize the variation in surface amine density along the plate. Visualization was

accomplished simply by spotting ninhydrin every ~1 cm (figure 2.5) on the gradient and control

plates and its image was captured under white light using a digital camera. The time scale

between spotting and taking the photograph was kept constant for gradient and control plates.

Later the photographs were analyzed by digitally enhanced TLC analyzer, a free software to

extract the intensity of colors (black, red, green & blue). The intensities of color formed due to

the product formation (Ruhemann’s purple) were plotted as a function of distance along the TLC

plates to define the profile of the gradient. Another way of treating the plate with ninhydrin was

by soaking the whole plate in ninhydrin solution so that the intensity of color formation along the

gradient plate could be the measure of amine gradient. However, the spotting method is

considered better than soaking because of the way in which ninhydrin reacts with the amine on

the plate. It reacts with the alkyl amine, cleaves the NH2 group to form the free dye, Ruhemann’s

Scheme 2.1. Ninhydrin reaction with primary amines.
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purple.  Because some of the dye can be lost in solution as the plate is dipped into the reagent

solution, its best to spot rather than soak the TLC plates with ninhydrin.

2.4.1 Digitally enhanced TLC analyzer (DE-TLC analyzer)

DE-TLC analyzer is free software mainly developed as an inexpensive tool for qualitative

and quantitative detection in TLC analysis.114, 115 With the aid of a digital camera and this

software, it is possible to extract red, blue and green spectrum (RGB) from the TLC plate. It

works in such a way that when the picture is uploaded in the software, it allows the user to draw

a line across the plate where the analysis needs to be done. It gives four spectra i.e., red, green,

blue and black/white (b/w) spectrum along the line (Figure 2.5).

Figure 2.5. Spotting ninhydrin on a gradient TLC plate.

Figure 2.6. DETLC analyzer- Snapshot of uploaded TLC picture and corresponding spectra (red,
green , blue & black/white) obtained across the white line drawn across the sample spots..
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Because the TLC plate contains a fluorescent indicator, the TLC plate appears green under

254 nm radiation.  In Figure 2.5, a test spot in the middle of the plate can be seen. Using the

software, a line was drawn across the test spot. Since the spot quenches the green fluorescence, a

negative peak is observed in the green spectrum. In the case of separation on TLC plates, the

photographs were taken under UV chamber with a 254 nm lamp. The analyte components are

present as dark spots because they quench the fluorescence. In the ninhydrin spotted TLC plates,

the line was drawn over the dark spots and peaks were obtained. The intensity of the black-white

spectrum peaks was plotted vs. distance.

2.4.2 Detection for analyte separation

As mentioned above, the analyte compounds appear as dark spots under UV light because of

fluorescence quenching. Hence, the components in the TLC chromatogram will appear as

negative peaks similar to the green spectrum in Figure 2.5. The distance between analyte spot

before elution and the peak apex for each peak was considered as distance travelled by the

compound to calculate the retention factor (Rf) factor in each case. Rf is the measure of the

retention of a compound in a planar chromatographic system.116

Rf = Distance travelled by the compound
Distance travelled by the solvent

Also, resolution between the neighboring peaks was calculated for each component using

the equation below116

Rs = D
(W1 + W2)/2
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where D is the peak-to-peak distance of the two peaks and W1 and W2 are base width of the

peaks.

Since the sample was spotted on the TLC plate manually, the spot size varied. This could

affect the measurement of peak width to compute the number of theoretical plates (N and H).

Hence, theses parameters (N and H) were not determined in this study.

2.5 Streaming potential measurement

Characterization of surface amine gradients is a challenging task when they are chemically

bound on the inside walls of a capillary. This is mainly because the surface amine groups are not

exposed on the outside, which limits the use of common surface characterization techniques such

as XPS and contact angle measurements. Streaming potential measurements have long been used

for the characterization of surface modification especially surface charge densities on

capillary.117 It is one of the several electrokinetic effects that is influenced by the surface charge.

On a charged surface such as a microchannel or colloidal particles, an electrical double layer

(EDL) is formed at the interface by the surface charge and the surrounding counter ions in

solution. This layer has two distinct parts, a Stern layer where the counter ions are strongly

attached to the surface and ‘diffuse layer’ where the ions are less strongly bound.118 The ions that

exist at the Stern layer and the diffuse layer close to it can move when the charged solution

moves. The rest of the counter ions remain static in bulk. The plane that separates the moving

and stationary layer of ions is called ‘Shear plane’. The potential that exists at this plane is called

‘Zeta potential’119 (Figure 2.6).
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Streaming potential measurements are one the methods used to determine the zeta potential

at the surface, other than electroosmotic mobility.120 When an ionic solution is allowed to flow

across a charged surface, such as silica capillary, there will be a double layer formed with the

counter ions and the ions at the surface. When an external pressure is applied to the capillary

solution, the liquid is externally forced to move through it from one end to the other. This will

create the counter-ion displacement on the EDL and produces an excess of ions at one end and

Figure 2.7. Schematic sketch of the double-layer.
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depletion at the other end (Figure 2.7). This generates a potential between the two ends of the

capillary tube called the ‘streaming potential’.121

The streaming potential thus generated is measured as a potential drop across two platinum

electrodes, the magnitude of which is related to the zeta potential using the Smoluchowsky

equation’122

∆E = P ζ εr 0 / η λ

In this equation, ζ is the zeta potential in volts, η is the viscosity of the solution in Pascals-

second (Pa-s), λ is the conductivity of the solution in Siemens per meter (S/m), ε is the dielectric

constant of water, ε0 is dielectric permittivity of vacuum, ∆E is streaming potential in volts, and

P is pressure in Pa. If the applied pressure, dielectric permittivity, viscosity, and conductivity of

Figure 2.7. Schematic diagram of the streaming potential measurement.
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the solution are kept constant, the streaming potential depends solely on zeta potential.

Streaming potentials measured with pulsed flow allow for accurate and precise values to be

obtained quickly using non-reference platinum electrodes.2, 123 Zeta potential is calculated by

rearranging the above equation

ζ = (η λ/εr 0)× ΔE/ P

where    η = 0.936x10-3Pa.s

εr = 79

ε0 = 8.85x 10-12 F/m

λ = 0.024 ± 0.001 S/m (exact value was measured by conductivity meter each time)

P = 65 x (1.333 x 103) Pascal

ΔE = Streaming potential in V

Because zeta and streaming potentials are very sensitive to the surface charge density, they

can provide a valuable means to characterize the profile of a surface chemical gradient of amine

groups in a narrow diameter capillary. However, zeta potential calculated by the Labview

software (using the above equation) was used for gradient profile plots since zeta potential is

considered as a direct function of surface charge density. Under near neutral pH conditions, the

amine groups will be protonated giving rise to a positive zeta potential; an unmodified capillary

will give rise to a negative zeta potential because of surface silanol groups. It is understood that

zeta potential depends on solution pH as well, because of protonation and deprotonation on the

surface.

In our case, the amine groups are protonated at (pH < 7), which gives rise to a positive zeta

potential. As the surface amine density changes along the length of the capillary, the zeta
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potential will change. Hence, at a given pH, the plot of zeta potential versus distance should

exhibit a gradient trend providing there is a gradient of amine groups on the surface. The

experimental set-up designed for the streaming and zeta potentials on the amine modified

gradient capillaries will be discussed in detail in Chapter 7.
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Chapter 3- Profile Control in Surface Amine Gradients Prepared by Controlled-Rate

Infusion

Adapted from Kannan, B.; Dong, D.; Higgins, D. A.; Collinson, M. M., Langmuir 2011, 27 (5), 1867-

1873

3.1 Abstract

Surface amine gradients that exhibit a wide variety of profiles, including those that

incorporate spatially distinct regions having steep and gradual variations in chemical

functionality, have been prepared by the sol-gel process using a controlled-rate infusion method.

In this work, a substrate that incorporates dimethyl and Si-OH groups is temporally modified

with an aminoalkoxysilane (NH2(CH2)3Si(OC2H5)3) to build a gradient film for which the amine

content changes over a 10-20 mm distance. Both x-ray photoelectron spectroscopy (XPS) and

contact angle measurements confirm the presence of a chemical gradient across the surface of the

film.  As expected, a greater density of amine functionalities and lower contact angle were found

at the bottom of the gradient relative to the top.  The local steepness of the gradient was

systematically controlled by changing the rate of infusion.  Fast rates of infusion created gradient

surfaces where the amine content changed slowly along the surface and never reached saturation,

whereas slow rates of infusion formed a surface exhibiting a steep rise in amine content followed

by saturation. The steepness of the gradient was also changed at predefined positions along its

length by programming the rate of infusion.  Gradients prepared using six-step, three-step, and

two-step programmed infusion rates are shown.  The data fit nicely to a kinetic model that

assumes first-order kinetics. The ability to manipulate the gradient profile is particularly vital for

applications that rely on mass transport and/or those that require spatial control of gradient

properties.
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3.2 Introduction

The ability to spatially organize functional groups on surfaces in a controlled fashion is

needed for diverse applications including those that involve directed/controlled transport and the

growth and adhesion of proteins and cells on surfaces.2, 6, 124-126 In particular, for applications

related to directed/controlled transport, gradients of precisely controlled steepness along the

gradient dimension is necessary. Various methods have been developed over the past two

decades for the preparation of chemical gradients. A few of these methods especially the ones

that are based on diffusion of silane molecules have been widely used for various applications.

An inherent limitation of all methods that rely on diffusion, however, is that the gradient profile

(steepness) cannot be easily controlled. Genzer and coworkers circumvented this limitation by

forming gradients on stretched PDMS films.28 When the strain in the PDMS films was released,

the steepness of the gradient increased relative to that obtained on an unstretched film. By

changing the degree at which the PDMS films were stretched, the slope of the gradient was

changed.28 However, in all cases the shape of the gradient corresponded to “Fickian-type

diffusion profiles”.28 Although clever, this method is limited to flexible surfaces.

Another study where the gradient steepness was varied was discussed in Chapter 1. It was

used to form metal nanoparticle and  nanoparticle-protein gradients of varying slope.29 In the

present study, a sol-gel based immersion method was used to create functionally graded thin

films whose steepness was changed at predefined positions along its length. This approach takes

advantage of the versatility provided by silane chemistry and, most importantly, affords explicit

control over the gradient profile (i.e., the local steepness of the gradient surface). The process

begins with the formation of a universal base-layer that contains reactive silanol functionalities

on a suitable substrate (glass slide, electrode, silicon wafer, etc.) followed by time-dependent
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exposure of the base-layer to a reactive organoalkoxysilane (RxSi(OR’)4-x) via controlled-rate

infusion. The presence of the base-layer ensures consistency and uniformity when functionally

graded thin films need to be produced on different surfaces, such as those needed for

chromatographic or biological applications. In addition, it affords a surface of the desired

functionality before gradient formation begins.  Controlled-rate infusion enables the steepness of

the gradient surface to be varied systematically at different points along the gradient surface,

providing a high degree of control over local gradient properties.

In this work, this approach is demonstrated by modifying a substrate that contains dimethyl

((CH3)2Si(OCH3)2 and silanol (SiOH) groups with an aminoalkoxysilane

(NH2(CH2)3Si(OC2H5)3) to build a gradient film for which the amine content changes in a

programmed fashion over a 10 to 20 mm distance.  Surface amine gradients are particularly

advantageous to construct since amine functional groups provide a means to link more complex

structures (i.e., peptides, proteins) to the surface via relatively simple chemical reactions.  Such

gradients have been previously prepared from organic monomers such as allylamine,7, 30 from

aminopropyltriethoxysilane using the vapor diffusion method127, 128 and a liquid immersion

method,129 electrochemically using 2-aminoethanethiol,130 from isocyanopropyldimethylsilane

gradients,131 and from amine functionalized alkanethiols using a cross-diffusion method.132 They

have been used as scaffolds to make gradients in nanoparticle density,128 surface charge

density,133 and fluorescent spheres130 and to study protein and carbon nanotube adsorption.129, 132

In contrast to these methods, the approach reported herein is relatively simple and universal,

provides control over gradient steepness, and allows surface amine gradients to be formed in

both one- and two-dimensions on non-standard surfaces.

3.3 Experimental section



www.manaraa.com

48

3.3.1 Sample preparation.

Tetraethoxysilane (TEOS, 98%), dimethyldiethoxysilane (DMDEOS, 97%) and 3-

aminopropyltriethoxysilane (APTEOS, 99%) were purchased from Acros Organics and used as

received.  The silica sol for the base-layer was prepared by mixing ethanol, TEOS, DMDEOS,

0.1 M HCl and water in a 1:0.5:0.15:0.15:0.15 volume ratio.  The sol was allowed to age for 24

to 36 h prior to use.  Silicon wafers (University Wafer, B-doped, <111>) were cut to the

appropriate size (1 x 1.3 cm for the one-dimensional (1D), 1.3 x 1.3 cm for two-dimensional

(2D)) gradients, and 1 x 2 cm for the programmed gradients) and then cleaned with fresh conc.

H2SO4:H2O2 (70:30) for 15 minutes at 80º C in a water bath (CAUTION: Piranha solutions are

extremely dangerous and react violently with organic materials).  After cleaning, the silica sol

was spin coated on the wafers at 4000 rpm for 30 seconds and then dried in a desiccator

overnight. The base-layer coated wafer was subsequently soaked in ethanol for 10 to 12 hours

for stabilization.

To prepare the 1D gradient, the base-layer coated wafer was removed from the ethanol bath

and mounted vertically in a 5-mL glass shell vial.  Using a syringe pump (New Era, NE-1000),

an APTEOS sol (prepared by mixing ethanol, APTEOS and water in a 1:0.05:0.01 volume ratio

unless otherwise noted) in a 3-mL syringe (8-mm ID) was infused into the vial at a pre-

programmed rate. The sol reached the top of the substrate in 2-60 min, depending on the rate of

infusion.  The substrate was subsequently removed from the sol, rinsed thoroughly with ethanol

and dried with nitrogen.  The 2D gradient was prepared in a similar fashion.  After formation of a

1D gradient, the substrate was rinsed with ethanol, rotated 90º and placed in a new vial.  A fresh

APTEOS sol was infused into the vial as described above.  The substrate was again rinsed with

ethanol and dried.  Positive control samples were prepared by soaking base-layer coated wafers
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in the APTEOS sol for a 30 min time period, removing them and rinsing them with ethanol.  This

process was repeated a second time during preparation of the positive control for the orthogonal

gradient.  Negative controls simply consisted of the wafer with the TEOS:DMDEOS base-layer.

3.3.2 Characterization

X-ray photoelectron spectroscopy (XPS) analysis was performed with a ThermoFisher

ESCAlab 250 imaging X-ray photoelectron spectrometer (Al K (1486.68 eV), 500 m spot

size, 50 eV pass energy, 0.1 eV step size). XPS spectra were acquired in regular fashion

(typically every 1-2 mm) across the wafer starting about ~ 1 mm from the edge.  Spectra were

calibrated by taking the C1s peak as occurring at 284.6 eV.  Contact angle measurements were

made with a Rame-Hart contact angle Goniometer by the sessile drop method.  The volume of

the drop of water was 3 µL. To enhance the differences in the contact angle across the gradient,

the samples were exposed to HCl vapors to protonate the amine groups.  For the negative and

positive control samples, two measurements were made at two different positions.  For the 1D

gradient, four measurements were made from top to bottom. Film thicknesses were measured

via spectroscopic ellipsometry (R-SE, J.A. Woollam).  In these experiments, the ellipsometric

data were acquired at ~ 2 mm intervals along the length of the film. Data were acquired from

approximately the same locations (i.e., within 0.5 mm) both before (TEOS-DMDEOS base-layer

alone) and after gradient deposition.

3.4 Results and Discussion

3.4.1 Preparation

In this work, a controlled-rate infusion method was used to create a surface chemical

gradient with spatially controlled chemical composition on a relatively hydrophobic surface.
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This method relies on the presence of a reactive, homogenous (on the macroscopic scale) base-

layer and a reactive organosilane that can condense with surface silanol groups on the time scale

of infusion. The extent of the gradient thus formed depends on the reactivity of the

organoalkoxysilane in the sol and the rate at which the sol is infused into the reaction vial. The

experimental set-up consists of a glass vial that contains a suitably modified substrate and a

programmable syringe pump that is used to infuse the reactive silane into the vial. In this case,

the base-layer was formed from a sol that contained TEOS and DMDEOS (3:1 mole ratio).  The

organosilane that was infused into the vial was APTEOS.  After gradient deposition, the top of

the film, which was in the sol for the shortest period of time, has a lower density of NH2 sites

while the bottom has the greatest density of NH2 sites. Gradients in two orthogonal directions

can also be easily formed by rotating the as-prepared 1D gradient 90 degrees and repeating the

APTEOS deposition, as depicted in the cartoon shown in Figure 3.1.  In this case, the lower left

corner of the substrate should contain a high density of NH2 groups and the upper right corner a

low density of NH2 groups.  By controlling the rate of infusion, the steepness of the gradient can

be controlled and strategically modified along its length.

The base-layer serves many purposes; most importantly it ensures a consistent, uniform

source of surface silanol groups regardless of the type of substrate used, whether it is a silicon

Figure 3.1. Simplified schematics of of deposition of a second one-dimensional gradient
orthogonal to the first.
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wafer, glass, conductor, etc., and it provides a means to add additional functionalities to the

surface. The use of a base-layer is particularly valuable when functionally graded thin films

need to be formed on non-traditional substrates such as those that may be needed in biochemical

research. The only requirements are for the base-layer to be stable during gradient deposition

and that it has reactive Si-OH groups.  In this work, the base-layer also contained an organic

modifier (dimethyldialkoxysilane).  The presence of the dimethyl groups will impart some

hydrophobicity to the surface so that during infusion the surface changes from one that is

relatively hydrophobic to one that is more hydrophilic.  The reactivity of the organoalkoxysilane

in the infusion sol also is important.  An added benefit of using an aminoalkoxysilane is that the

amine groups act to catalyze (self catalysis) the sol-gel reaction, thus increasing the rate at which

the silane hydrolyzes and condenses to the surface.134 The gradient surfaces thus formed were

characterized with XPS, contact angle measurements, and profilometry.

3.4.2 XPS Analysis.

Figure 3.2 shows N1s (399.2 eV) and Si2p (102.9) overlay spectra acquired at defined

intervals along the length of 1D gradient films and controls.  The negative control (NC) shows a

total of 10 spectra acquired every 1.2 mm along the length of the film; the positive control (PC)

shows 9 spectra acquired every 1.4 mm; the gradient (G) shows 9 spectra acquired every 1.4

mm.  As expected, the negative control (base-layer coating only) shows a small N1s peak and a

large Si2p peak of nearly constant intensity across the length of the film.  Shifts in the baseline

and measurement noise across the 10 spectra shown for the negative control in Figure 3.2 (NC-

N) mask the true height of the N1s peak.  Careful integration of these data yields a mean peak

area of 3100 cps eV. The presence of the small N1s peak in the negative control is due to minor

contamination of the surface. The positive control shows strong N1s and Si2p signals that
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remain relatively constant across the length of the film.  This is expected as a relatively

homogeneous distribution of NH2 and Si should be found when the surface of the substrate is

modified using a self-assembly like procedure.  In contrast, in the gradient film (G-N), the N1s

peak clearly increases from top to bottom along the film, consistent with the presence of a

gradient in amine functionality. The shoulder observed at 401.6 eV in the N1s peak is due to the

presence of ammonium species.33 The protonated form of the amine group has been shown to

result from hydrogen bonding interactions with surface silanol groups, as elucidated by XPS and

FTIR measurements.135, 136 We noticed that as the films aged for days/weeks, this shoulder

increased in intensity.  XPS spectra acquired from a self-assembled NH2-terminated film treated

with 5% methyl iodide (v/v in ethanol) to convert the NH2 groups to quaternary amine groups

(N(CH3)3
+) showed a large peak at 401.7 eV and a small shoulder at 399.3 eV.

Figure 3.2. N1s and Si2p XPS spectra acquired along the length of the gradient from
top to bottom at ~ 1 mm intervals for the negative control (NC), positive control (PC),
and gradient films (G). The black line corresponds to the spectrum acquired at the
very top of the gradient.
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Figure 3.3 more clearly shows how the area under the N1s and Si2p peaks change along the

length of the gradient (G) and positive control (PC) films.  For the gradient, the area under the

N1s peak initially increases from top to bottom, consistent with the formation of a gradient in

amine groups.  For the positive control, the area of the N1s peak is relatively invariant with

distance. As can be seen in Figure 3.3, the N1s signal begins to level off in the middle of the

gradient.  This leveling off is attributed to a saturation of surface reactive sites (Si-OH groups)

and/or the reduced accessibility of such sites as the 3-aminopropyl groups populate the surface.

The relative standard deviation of the areas measured under the XPS spectra acquired within a

single gradient film ranges from ca. 1-3% indicating the films are continuous.  Significantly

more variability is observed in samples prepared weeks/months apart. While the shape of the

gradient is the same, the magnitude of the area under the N1s peak (or the N1s/Si2p peak ratio)

at saturation varies ~ 10 to 30%. Such sample-to-sample differences likely result from variations

in relative humidity and temperature, both of which influence the rates of

hydrolysis/condensation and the extent of cross-linking in the base-layer.  Small changes in the

surface concentration of reactive Si-OH groups will influence the amount of APTEOS that

condenses to the surface and thus the N1s XPS signal.
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In contrast to what is observed for the N1s peak, the area under the Si2p peak decreases

slightly (~ 10%) along the gradient, indicative of less Si present near the bottom of the film

relative to the top. Such results are not observed for the positive control (PC), where the area

under the Si peak is relatively invariant with distance. Because XPS is inherently a surface

sensitive technique, only the top few nanometers of the gradient film are interrogated. At the top

of the film, more of the base-layer will be probed, whereas at the bottom of the film the

aminosilane layer will make a relatively greater contribution to the observed signal.  The area

Figure 3.3. N1s and Si2p XPS areas as a function of distance along the length of the gradient
from top to bottom for the gradient (G) film.  For the positive control (PC) sample, the peak
area ratio of N1s/Si2p as a function of distance is shown.  In this case, both the N1s and Si2p
peak areas are relatively invariant with distance.
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under the Si2p peak likely decreases from top to bottom because the density of the Si atoms in

the spin coated base-layer is greater than the density of Si atoms in the aminosilane layer.

The thickness of the aminosilane layer as a function of position along the gradient was

evaluated using ellipsometry.  Ellipsometric data were first collected on the base-layer at 2 mm

intervals.  Data were then acquired from approximately the same locations after gradient

deposition. Ellipsometric measurements show no measurable difference in the film thickness

before and after gradient formation, indicating that the thickness of the amine gradient is < 5 nm

(i.e., within the error of these measurements).  This result indicates that the amine layer is very

thin (i.e., from sub-monolayer to a few monolayers at most).

Orthogonal 2D gradients in amine groups can also be formed in a similar fashion by

rotating a previously formed 1D gradient 900, and then repeating the procedure. Figure 3.4

shows XPS results for a 2D gradient along with its positive control.  For the 2D gradient, the area

under the N1s peak increases from top to bottom in each orthogonal direction as indicated by the

arrows; there is also a monotonic increase along the diagonal (bottom left to top right) of the

substrate, consistent with the formation of a bidirectional gradient in amine groups.  The area

under the Si2p peak for the gradient film also changes slightly in a similar but somewhat more

complex manner than in the unidirectional (1D) gradient.  The slight changes in the Si2p peak

area likely reflect slight differences in the density of the aminosilane layer relative to the base-

layer as described earlier.  For the positive control (see Figure 3.4), the area ratio of N1s/Si2p as

a function of distance is shown.  The Si2p and N1s peak areas are both relatively invariant with

distance and thus the N1s/Si2p area ratio is roughly constant in all directions.
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Figure 3.4. N1s and Si2p XPS peak areas as a function of distance along the length of the
gradient in two orthogonal directions.  The arrows indicate the direction of the gradient
from top bottom.  For the positive control (PC) sample, the N1s/Si2p peak area ratio as
a function of distance is shown.  In this case, both the N1s and Si2p peak areas are
relatively invariant with distance.



www.manaraa.com

57

It is also apparent in Figures 3.3 and 3.4 that at distance, d = 0, the area under the N1s peak

is not zero.  The origin of this nonzero intercept arises in part because the XPS data acquired in

this region (~ 1 mm from the edge of the silicon wafer) does not exactly correspond to the start

of the gradient.  It also includes contributions from contamination by adventitious nitrogen

species, some vapor phase reactivity, and contributions from an initial fast reaction66 of the

aminosilane with surface silanol groups.  An estimate of the contributions to the peak area from

adventitious nitrogen, obtained from the negative control samples, is 3200 (± 350) CPS eV.

Thus, a significant portion of the observed offset results from surface contamination, with the

remainder arising from the initial fast reaction and/or vapor phase reactivity of the aminosilane.

Additional experiments were undertaken to evaluate these two possibilities.

To evaluate whether or not the condensation reaction also takes place in the vapor phase

above the solution-air interface, an additional control experiment was done (Figure 3.5). In this

experiment, the infusion process was stopped before the sol reached the top of the wafer. The

bottom (exposed to APTEOS in solution for 15 min) and top (only exposed to APTEOS that may

reside in the vapor phase) regions of the substrate were examined via N1s XPS and the results

compared to that observed for a negative control. The N1s signals were nearly identical in the

negative control in the region of the film exposed only to APTEOS vapor (within experimental

error).  In contrast, the N1s signal was substantially higher in the region of the film exposed to

APTEOS in solution. This result is in contrast to a recent report where the presence of amine

moieties in regions not directly exposed to APTEOS was believed to result from vapor phase

reactions.130 The concentration of aminosilane in solution was significantly higher (by a factor 5

to 500) in that study.  A high concentration of APTEOS in paraffin oil (1:1 w/w) was also used

to form amine gradients via the vapor diffusion method.127 Neat APTEOS has a fairly high
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boiling point (~220 0C) and thus a relatively low vapor pressure at room temperature (~ 2 Pa).

By keeping the concentration low (<< 1mM), the concentration of APTEOS in the vapor phase is

expected to be small.

Given these results, it is concluded that much of the nitrogen at distance = 0 likely results

from the fast reactivity of APTEOS with surface silanol groups.  Previous work has noted that

the reaction of APTEOS with silica surfaces occurs on three different time scales.66 The overall

process includes an initial fast reaction, occurring in seconds, and subsequent slower processes

occurring over minutes and hours.66 To evaluate the contributions of the fast process to our

system, a base-layer coated slide was place in a fresh APTEOS solution (aged for 5 to 28 min)

for a given period of time ranging from two minutes to 25 minutes and then removed and rinsed.

Figure 3.5. Schematic sketch that shows the set-up for vapor-phase reactivity experiments.
Inset shows N1s spectra of vapor exposed part and solution exposed part of the sample.
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The area under the N1s peak in the XPS spectrum for the sample exposed to APTEOS for 2

minutes was 8600 CPS eV whereas a slide soaked for 25 minutes was 13,600 CPS eV.  After

taking into account the baseline levels of nitrogen present in the negative control, it is concluded

the APTEOS deposited by the fast reaction corresponds to approximately half the total APTEOS

deposited at the top of the gradient.  While this fast reaction leads to a relatively uniform initial

coating on the slide and hence, the nonzero offset at the top of the gradient (near distance = 0),

the shape of the gradient is determined predominately from the slow reaction of APTEOS with

the surface.

3.4.3 Gradient Profile Control

An important attribute of the controlled-rate infusion method is that it affords the means to

change the steepness of the gradient at arbitrary positions along the film.  Changes in the

gradient profile can be accomplished by simply changing the sol infusion rate in a controlled

fashion.  To demonstrate the value of this approach, several gradients were prepared in this

mode, characterized by XPS, and fit to a simple kinetic model. Although the kinetics of reaction

are known to be complex,66 a simple single-step kinetic model was employed.  One nice feature

of this simple kinetic model is that it can be used to predict the overall shape of the gradient

profile. The kinetics of film growth was assumed to exhibit first order dependences on the silica

precursor concentration and the density of reactive sites on the base-layer surface:



dN s
dt
 kCsolN s (1)

where k is the rate constant for the condensation reaction, Csol the concentration of reactive

silica precursors dissolved in the sol and Ns the density of reactive silanol sites on the base-layer

surface.  Rearranging and integrating Eqn. 1 shows that the density of amine modified sites, Na,
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should exhibit a simple exponential dependence upon the total time each region of the base-layer

is exposed to the sol. It is shown by the derivation below.

Na is related to Ns by eqn 2 below

Na(t) = Ns(0) - Ns(t) (2)

Rearranging and integrating equation 1,

ln (Ns(t)/ Ns(0))  = -kCsolt

Ns(t)/Ns(0) = exp(-kCsolt)

Ns(t) = Ns(0) exp(-kCsolt) (3)

Substitute equation 3 in 2

Na(t) = Ns(0) - Ns(0) exp(-kCsolt)

Na(t) = Ns(0) ((1- exp(-kCsolt)) (4)

Not shown in Eq. (4), is the presence of an offset.  As noted above, the offset results

predominately from adventitious nitrogen contamination and the initial fast reaction of APTEOS

with surface silanol groups. When the data are fit, this constant is allowed to float.

The simplest demonstration of gradient profile control, and the dependence on first-order

kinetics, is to vary the infusion rate between separate depositions. Figure 3.6 shows the N1s XPS

results obtained from gradients prepared at two different infusion rates, differing by a factor of

15. As can be seen, the initial slopes of the two plots (i.e., the gradient steepness) are vastly

different.  Furthermore, as expected, “saturation” of available surface sites was not observed

when the infusion rate was fast.  The solid lines appended to Figure 3.6 depict fits of the XPS

data to Eqn. 4 in which kCsol was held to 11.8 h-1, while Ns(0) and the offset described above

were allowed to float.  This rate constant is similar to that reported previously for the
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intermediate rate reaction (24.9 h-1)66 in the three-step process whereby APTEOS is believed to

react with the silica surface. Because the XPS data cannot be collected at very top of the

gradient (presumably d = 0), some differences will undoubtedly be present at the beginning of

the gradient.   The overall high quality fits to the XPS data, however, demonstrate that deposition

leading to the gradient profile is dominated by a single first-order process.

The gradient profile can also be altered at any given position in the gradient by strategically

programming the infusion rate. Figure 3.7 depicts the results obtained when the infusion rate

was changed at predefined positions along the gradient.  Shown are XPS data from gradients

Figure 3.6.  Area under the N1s XPS peak (squares) as a function of distance along the length
of the substrate for gradients prepared at infusion rates (dashed line) of (A) 5.4 mL/h and (B) 81
mL/h, using identical sols. The solid lines depict first order kinetic models (Eqn. 4) for the XPS
data using kCsol = 11.8 h-1. These results demonstrate that the gradient profile (e.g. steepness)
can be controlled by simply changing the infusion rate.
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prepared using six-step (A, B), three-step (C), and two-step (D) programmed infusion rates. A

distinct break in the profile can be readily seen in the gradient formed using two different

infusion rates (Fig. 3.7 D).  At about the half-way mark, the steepness of the gradient increases.

Likewise, two distinct breaks can be seen in the profile formed when three different infusion

rates were employed during the course of gradient formation (Fig. 3.7C). For the 6-step gradient,

the breaks are naturally much smaller and harder to discern. The solid lines appended to Figure

3.7 depict fits to Eqn. 4, obtained by holding kCsol constant. The fits mimic the observed data,

suggesting that gradient profiles can be predefined and prepared by simply choosing the

appropriate infusion program. Differences between the fits and experimental XPS results likely

arise from difficulties associated with correlating the “exact” positions at which the XPS data

were collected with the “exact” points in time when the infusion rate was changed as well as

uncertainties associated with contributions from the fast reaction of APTEOS and surface silanol

groups. This is most noticeable at the top of the gradient and near where the rate of infusion is

changed. Nevertheless, these results demonstrate that this simple model can be used to predict

gradient profiles and that the gradient profile (e.g., steepness) can be altered during deposition by

simply changing the infusion rate.
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3.4.4 Contact angle analysis

Contact angle measurements (sessile drop) were also undertaken to verify the presence of a

gradient in NH2 groups on the film surface.  Although the relationship between amine

modification and contact angle is not a simple one, contact angle measurements can give

valuable information on hydrophobicity differences across the length of the film.  The as-

prepared positive (uniformly distributed NH2) and negative (dimethylsilane, silanol, siloxane

groups) controls showed contact angles that differed by only a few degrees.  Such small changes

are likely due to the heterogeneous nature of the silica surface, which contains groups of varying

Figure 3.7.  Area under the N1s XPS peak
(squares) as a function of distance along the
length of the substrate for programmed
gradients prepared using varied infusion rates.
Shown are data from gradients prepared using
(A) six-step, (B) six-step (two-fold diluted
solution), (C) three-step and (D) two-step
programmed infusion rates (dashed lines).  The
solid lines depict first order kinetic models for
the XPS data using kCsol = 11.8 h-1 for A, C,
and D and  kCsol = 5.9 h-1 for B.
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polarity (unreacted silanol groups, siloxane, amine group and its associated propyl moiety).  In

an attempt to amplify the differences in the hydrophilicity across the film, the films were

exposed to HCl vapor for 30 min as shown in Figure 3.8. The negative control before and after

exposure to HCl shows the same contact angle (82º), which would be expected for a

methyl/silanol covered surface with few basic sites. The positive control shows a clear

dependence on exposure to HCl as expected for a surface that contains amine groups.  After

protonation, the contact angle decreases to ~ 65o from ~80o measured before protonation.  As

described in the literature, it is likely that not all the surface amine groups will be protonated as

many are H-bonded with neighboring silanol groups.67 Nevertheless, a significant difference in

contact angle is observed. After exposure to HCl vapor, the gradient sample clearly shows a

decrease in contact angle from top to bottom, in support of the XPS results. Figure 3.8 shows the

water contact angle profile on gradient sample after HCl exposure; the gradual decrease in the

contact angle from top (~ 80o) to bottom (~ 60o) is reflected by the changes in droplet shape

along the gradient surface.
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3.5 Summary

A straightforward, controlled-rate infusion approach for building surface chemical gradients

of strategically-controlled profiles has been described.  This method not only allows for

preparation of separate gradients exhibiting different profiles, it also affords the means to change

the gradient steepness at arbitrary positions within a single gradient.  Deterministic changes in

gradient steepness are produced by simply adjusting the rate of infusion into the deposition

reservoir. By this method, gradients exhibiting a wide variety of profiles can be prepared,

including those incorporating spatially distinct regions having steep and gradual variations in

chemical functionality.  Gradients exhibiting near linear variations in their composition and/or

properties can also be prepared.  Importantly, in situations where film deposition is governed by

simple kinetics, the infusion rates required to produce a particular gradient profile can be

determined in advance.  Control over the gradient profile is particularly important in applications

that rely on mass transport such as haptotaxis where it may be necessary to slow down or speed

up the movement of cells on a surface or for applications that require a high degree of spatial

control to build more complex surfaces.  The ability to tailor the hydrophobicity/hydrophilicity

of the base-layer provides additional means to change the surface chemistry and subsequently

control transport.

Figure 3.8. Top: Experimental scheme to enhance the difference in hydrophobicity in the
amine gradient formed on a base-layer coated silicon wafer. Bottom: Water droplets along a
1D surface amine gradient.
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Chapter 4: Aminoalkoxysilane Reactivity in Surface Amine Gradients Prepared by

Controlled-Rate Infusion

Adapted from Kannan, B.; Higgins, D. A.; Collinson, M. M., Langmuir 2012, 28 (46), 16091-16098

4.1 Abstract:

The reactivity of a series of substituted aminoalkoxysilanes used for surface amine gradient

formation has been studied using the previously described time based silane exposure method

termed controlled-rate infusion (CRI).  The aminoalkoxysilanes used include those that contain

primary, secondary, and tertiary monoamines as well as more than one amine group (diamine

and triamine).  X-ray photoelectron spectroscopy (XPS) was used to confirm the presence of a

gradient in each case, and to acquire detailed information on gradient composition, from which

kinetic data was obtained.  The total area under the N1s XPS spectra allow for the extent of

amine modification to be quantitatively assessed along each gradient.  The N1s peaks actually

appear as doublets, providing additional data on the level of protonation, and hence, amine

basicity on the dry surface.  The degree of protonation showed an interesting trend toward

smaller values running from top to bottom along gradients incorporating the most basic amines.

The gradient profiles, including initial steepness and extent of saturation, were shown to be

highly dependent on the aminoalkoxysilane precursor employed. The highest levels of

modification were achieved for the diamine and primary monoamine precursors while the more

hindered amines produced lower levels of surface modification and took longer for saturation to

be achieved. By fitting the gradient data to a simple first order kinetic model, rate constants for

the condensation reaction between each aminosilane and accessible surface silanol groups were

obtained. The rate constants follow a similar trend as the level of surface modification:  triamine

~ diamine > monoamine and primary > secondary > tertiary, indicating kinetic factors play an

important role in controlling surface modification. The presence of more than one amine group
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on the silane is found to enhance the rate of condensation to the surface silanol groups, while the

more hindered secondary and tertiary amines slow condensation. Collectively, the results provide

valuable new data on how the number of amine groups, degree of substitution, and steric

hindrance influence silane reactivity with silica surfaces, amine surface coverage and basicity

along the gradient profile.

4.2 Introduction

The reactivity of the organoalkoxysilane is one of the key factors in controlling the gradient

profile in CRI. As discussed previously, in CRI, the time scale of reactivity between the

organosilane and the hydroxylated surface must match the rate of infusion, typically 2 – 60

minutes.  APTEOS works well because the amine functionality also serves as a catalyst to speed

up hydrolysis and condensation.  Other aminoalkoxysilanes will react differently, depending on

the number of amine groups, degree of substitution, and nature of the alkoxide group.

Understanding the nature of these variables will provide the knowledge needed to tailor

functionally graded surfaces for chromatography and/or biological applications. Characterization

of the gradient profile, on the other hand, can provide a straightforward approach to evaluate the

rate of condensation of an aminosilane to a surface, which is of direct importance to the broad

field of surface functionalization and modification.

The primary objective of this work was to examine a series of aminoalkoxysilanes having

different degrees of substitution (i.e., primary, secondary and tertiary) and different numbers of

amine groups (i.e., monoamines, diamines, triamines), Scheme 4.1, to elucidate the most

important factors controlling their reactivity with the substrate surface.  Gradient surfaces have

been prepared from these silanes, characterized with X-ray photoelectron spectroscopy (XPS),
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and the results fit to a first-order kinetic model to extract a rate constant for the condensation

reaction of the silane with surface OH groups.  As shown below, the gradient profile was

strongly dependent upon the reactivity of each silane, which was governed by the number of

amine groups on the molecule and the degree of amine substitution.  Furthermore, a detailed

analysis of the N1s XPS spectra revealed an interesting trend in basicity for the more basic

amines, with these surfaces exhibiting a decrease in the level of protonation with increasing

amine coverage running from top to bottom along the gradient surface.

Scheme 4.1 Aminoalkoxysilanes used in the study.
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4.3 Experimental Section

4.3.1 Sample Preparation

N-[3-(trimethoxysilyl)propyl] ethylenediamine (Diamine, 97%) was purchased from Sigma

Aldrich. N-[3-(trimethoxysilyl)propyl] diethylenetriamine (Triamine), n-

butylaminopropyltrimethoxysilane (N-Butyl), N,N-diethylaminopropyl trimethoxysilane  (N,N-

Diethyl) were purchased from Gelest, Inc. Tetraethoxysilane (TEOS, 98%),

dimethyldiethoxysilane (DMDEOS, 97%) and 3-aminopropyltriethoxysilane (APTEOS, 99%)

were purchased from Acros Organics. 3-Aminopropyltrimethoxysilane (APTMOS, 97%) was

purchased from TCI America.  All the silanes were used as received.  Silicon wafers (University

Wafer, B-doped, <111>) were cut to the appropriate size (1 x 2 cm) and then cleaned with fresh

conc. H2SO4:H2O2 (70:30) for 10 minutes at 70º C in a water bath (CAUTION: Piranha solutions

are extremely dangerous and react violently with organic materials). As previously described, the

silica sol for the base-layer consisted of ethanol, TEOS, DMDEOS, 0.1 M HCl, and water in a

1:0.5:0.15:0.15:0.15 volume ratio and was aged for 24-36 h prior to use.74 This sol was spin

coated on the wafers at 4000 rpm for 30 s and dried in a desiccator overnight.  Prior to gradient

preparation, the base-layer coated silicon wafer was soaked in ethanol for 10 to 12 h for

stabilization.

Surface amine gradients were prepared by slowly infusing a freshly prepared aminosilane

solution into a vial containing the above substrate.  The rate of infusion was controlled by use of

a programmable syringe pump (NewEra, NE-1000). During infusion, the base-layer coated

substrate was exposed to the aminosilane solution for different amounts of time along its length,

thus producing a gradual variation in the level of amine modification from top to bottom. The
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aminosilane solution used for infusion was prepared by mixing ethanol : silane : water in a 5 :

0.25 : 0.05 volume ratio.

4.3.2 XPS characterization

X-ray photoelectron spectroscopy (XPS) analysis was performed with a ThermoFisher

ESCAlab 250 imaging X-ray photoelectron spectrometer (Al K (1486.68 eV)), 500 m spot

size, 50 eV pass energy, 0.1 eV step size).  Samples were placed on top of conducting tape on a 5

cm x 2 cm sample holder. XPS spectra were acquired at constant intervals (typically every 1-2

mm) across the wafer and starting ~ 1 mm from the edge (line scan). The spectra were calibrated

by taking the C1s peak as 284.6 eV.  XPS curve fitting was performed using commercially

available software and a Gaussian-Lorentzian (70:30) function, after smart background

subtraction, similar to published work on amine modified surfaces by Unger et al.137

4.4 Results and Discussion

4.4.1 Gradient Formation

Similar to the process described in Chapter 3 on gradient formation using APTEOS, the

process of gradient deposition begins with the formation of a reactive, homogeneous base-layer,

formed by spin coating a sol containing TEOS and DMDEOS on a silicon wafer.  This substrate

provides a uniform layer of silanols to react with the various aminoethoxysilanes.74 The

aminosilane solution is infused at constant rate into a vial containing the vertically aligned wafer.

Because the bottom of the substrate is exposed to the silane for a longer period of time relative to

the top, the surface concentration of the amine groups should decrease from bottom to top. The

profile (shape) of the gradient will depend on the concentration of silane in the solution, the rate

of infusion, and the rate of condensation of the aminosilane with surface silanol groups (kc). In
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this work, the reactivity of a series of aminosilanes was evaluated. All but one (APTEOS)

incorporate hydrolysable methoxy groups, but each differs in the substitution (primary,

secondary, tertiary amines) and the number (monoamine, diamine, triamine) of amine groups. By

keeping the concentrations and infusion rate constant (or nearly constant), the gradient profile

will be determined primarily by kc.

Figure 4.1 shows N1s spectra acquired at defined intervals along the length of gradient

surfaces prepared using Diamine, Triamine, N-Butyl, N,N-Diethyl, and APTMOS. Each plot

consists of a total of 12 spectra acquired every ~1.5 mm along the length of the film. For

comparison, APTEOS XPS data from our previous work74 are also shown.  As expected, on all

six surfaces, the intensity of the N1s peak increases from top to bottom, confirming the presence

of a gradient in nitrogen content, and hence, the level of amine modification.  In contrast, control

samples prepared by soaking the base-layer coated substrate in an aminosilane solution showed a

uniform concentration of nitrogen across the length of the substrate.  The signal intensity was

significantly higher for Diamine and Triamine, in part because these precursors have two and

three nitrogen atoms, respectively, per molecule.  The signal intensity was lowest for the

secondary and tertiary amines (N-Butyl and N,N-Diethyl), indicating that a smaller amount of

the aminosilane deposited on the surface relative to either APTEOS or APTMOS, which show

similar intensities.
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The profile (shape) of the different gradients can be best seen by integrating the area under

the N1s peak and plotting it as a function of distance, Figure 4.2.  In this figure, the area under

the N1s peak for Diamine and Triamine was divided by 2 and 3 because these precursors have

two and three nitrogen groups per molecule, respectively.  The non-zero intercept observed in all

the profiles has four possible origins as described in Chapter 3:74 the position at which the XPS

data was acquired does not exactly correspond to the top of the gradient; contamination by

adventitious nitrogen; vapor phase reactivity of the aminosilanes; and contributions from an

initial fast reaction.66, 138

Figure 4.1 N1s spectra acquired along the length of the gradient from top to bottom at ~ 1.5
mm intervals for six amine gradients prepared from Triamine, Diamine, N-Butyl, N,N-Diethyl,
APTEOS14 and APTMOS.  Infusion solution:  ethanol:silane:water volume ratio:  5:0.25:0.05).
Infusion time was ~30 min.  The black line corresponds to the spectrum acquired at the very
top of the gradient.
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The contribution of the first is small relative to the other three, but would obviously be

higher for a very steep gradient.  An estimate of the contribution of adventitious nitrogen can be

obtained from negative control samples, which consist of the base-layer coated silicon wafer.

There are some month to month variations, but the N1s peak area typically ranges from 1100-

3500 CPS eV.  To evaluate vapor phase reactivity, the boiling points of the silanes were

compared.  All were higher than APTEOS with the exception of APTMOS, which has a boiling

Figure 4.2. N1s XPS area as a function of distance along the length of the gradient from
top (distance = 0 mm) to bottom for gradient films prepared from Diamine (diamonds),
Triamine (triangles), N-Butyl (circles), N,N-Diethyl (inverted triangles), and APTMOS
(squares).  The data for Diamine and Triamine were divided by 2 and 3, respectively.
Infusion solution:  ethanol:silane:water (5:0.25:0.05) by volume.  The solid lines represent
fits to the kinetic model described below.
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point of 92ºC. To evaluate the importance of vapor phase reactivity for APTMOS, the silane

solution was infused until the lower half of the substrate was immersed. During infusion, the

upper half was then exposed to silane vapor for 15 min. The sample was subsequently rinsed

and the N1s peak area for the vapor-exposed part of the substrate (e.g., upper half) was

determined.   The area under the N1s peak in this region was determined to be 4100 ± 200 CPS

eV (N=3), which is comparable to the negative control N1s area of 3300 ± 200 CPS eV

evaluated on that day, confirming that the reaction occurs predominately in the solution phase.

Thus, a significant contribution to the nonzero intercept is concluded to result from an initial fast

reaction of the aminosilane with surface silanol groups.74

The reproducibility of the XPS profile and the uniformity of the gradient across its entire

width can be seen in Figure 4.3. In this figure, the N1s line scans were acquired across the width

of the N-Butyl and N,N-Diethyl gradients and the area under the N1s peak in each case is

plotted. In both the plots, the standard deviation is < 10% of the absolute peak area, except for

the first two points in the N-Butyl gradient. This deviation might be due to the small variation in

positioning the sample in the sample holder, which could lead to a large variation in the signal,

especially at the low amine end.
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4.4.2 Gradient Profile

Although the infusion rates, silane concentrations, and timescales for infusion (~30 min) were

similar for all the gradients, the profiles obtained are very different for the different

aminomethoxysilanes, particularly in the nitrogen density on the surface and the rate at which it

increases with distance. The highest levels of modification following a 30 min infusion were

achieved using the Diamine and Triamine precursors while the lowest level of surface

modification was observed for the tertiary aminoalkoxysilane. To determine if the observed level

of modification reflects a different saturation level for each aminosilane (i.e., a different

maximum surface coverage), the base-layer coated substrates were soaked in the individual

Figure 4.3 N1s XPS area as a function of distance along the length of the gradient from
top to bottom for gradient films prepared from N,N-Diethyl and N-Butyl. Infusion
solution:   ethanol:silane:water (5:0.25:0.05 by volume).  The infusion time was ~30
min. The solid lines represent fits to the kinetic model described below.
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aminosilane solutions for 4 h, a time significantly longer than the 30 min infusion time.  Results

from XPS analysis are given in Table 4.1. The average N1s peak area obtained for the APTMOS,

Diamine and Triamine samples are within 10% of the values obtained at the end of the gradient

after a 30 min infusion time, indicating that saturation or near saturation of the surface has been

achieved. The maximum surface coverage for the Triamine precursor, however, is significantly

smaller than that observed for APTMOS or Diamine.  A lower surface coverage in this case

could result from steric hindrance due to size differences in the two silanes.139, 140 A simple

calculation of the cross-sectional area141 yields a surface concentration of ~7 x 10-10 moles/cm2

for APTMOS, ~5 x 10-10 moles/cm2 and ~4 x 10-10 moles/cm2 for the Diamine and Triamine,

respectively. It was calculated b the below equation.

Cross sectional area CSA = 1.091[M/(N ρ)]2/3

M – Molecular weight of the surface amine group

N – Avogadro number

ρ – Density of the amine group

Once the cross sectional area was calculated in cm2/molecule, the surface concentration (SC)

of monolayer coverage was calculated by

SC = (1/CSA) (1/N)

SC = (molecule/cm2) (moles/molecule)

SC = moles/cm2

The observed reduction in the N1s peak area is consistent with the increase in precursor size.

It is also possible that because Triamine hydrolyzes and condenses quickly, oligomers could also

be present in solution.  The relatively large size of these oligomers would hinder their binding to

free silanol groups, leading to lower coverage.139 In contrast, for N,N-Diethyl and N-Butyl, the
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N1s peak area was 25-30% higher after a four hour immersion period, indicating that saturation

was not achieved in 30 min.

In addition to the level of saturation, the gradient profiles for the different silanes differ

greatly in their shapes (Figure 4.2). Gradients prepared under these conditions with Diamine and

Triamine have a large positive intercept, are relatively steep at the low amine end and reach

saturation within 7 to 8 min.  In contrast, the N-Butyl and N,N-Diethyl gradients are shallow and

saturation is not observed on the time scale of the experiment (~ 30 min).  APTMOS falls

somewhere in between. The non-zero intercepts are also different for the different

aminoalkoxysilanes. Results obtained from APTMOS are similar to that previously described

for APTEOS,74 indicating the two precursors have similar reactivity.

4.4.3 Reactivity of Aminosilanes and Profile Control

To better understand the origins of the differences in aminosilane reactivity, the kinetics of

reactivity with the surface were investigated.  Gradients prepared by CRI provide a valuable

route to obtain such information, since by design the reaction time increases down the gradient.

Silane N1s area after 4 hr soak N1s area after 30 min
infusionb

Diaminea 16000 ± 50 18000 ± 200

Triaminea 12000 ± 300 13000 ± 400

APTMOS 20000 ± 500 18000 ± 200

N-butyl 16000 ± 3000 12000 ± 300

N,N-diethyl 14000 ± 500 10000 ± 300
a Diamine and Triamine divided by 2 and 3, respectively
bAverage and standard deviation of last three points in Figure 4.3.

Table 4.1. Average N1s area for samples prepared by soaking a base-layer coated substrate
in the aminosilane solution (same ethanol, silane & water ratio used for gradients in Figure
4.1) for 4 h. The diamine and triamine areas have been divided by 2 and 3, respectively.
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By fitting the gradient N1s XPS data to a simple first-order kinetic model which was developed

initially for APTEOS (Chapter 3), information on the reaction rates is directly obtained. As

described previously, the kinetics of APTEOS deposition are complex, including fast and slow

components.66, 138 The fast component is too fast to be resolved in these experiments and

appears as a constant offset in the model.74 The slower component governs the gradient profile

observed (see Figures 4.2 and 4.3). The expression employed in fitting these data is as follows

(derivation shown in chapter 3):

Na(t) = Ns(0)[1- exp(-kCsolt)]

where Ns and Na represent the number of accessible reactive surface silanol sites originally

present and the number of amine groups on the surface, respectively, while k is the rate constant

for the slow surface condensation reaction and Csol the concentration of reactive silica precursors

in the sol.  The solid lines in Figures 4.2 and 4.3 depict the individual fits to the above

expression. The values of k obtained from the data shown in Figure 4.2 are given in Table 4.2.

For comparison, kCsol for APTEOS was found to be 11.8 h-1 in our prior work.74

Table 4.2: Results from fit to a single-step kinetic model

Gradient Csol (mM) k (mM-1h-1)

Diamine 0.22 97±10

Triamine 0.18 91±16

N-butyl 0.19 28±7

N,N-diethyl 0.22 5.5±6.5

APTMOS 0.27 39±9
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From Table 4.2, it can be seen that the reactivity of individual aminosilanes with surface

silanol groups on the base-layer coated substrate is strongly dependent on the precursor, with the

tertiary amine reacting most slowly and the aminosilanes containing multiple N groups reacting

significantly faster. On a 30 min time scale, the Diamine and Triamine gradients reach

saturation whereas the secondary and tertiary gradients do not.  Also, the non-zero intercept is

slightly larger for the Diamine and Triamine precursors.  The order of reactivity follows the

trend:  Diamine ~ Triamine > APTMOS > N-Butyl > N,N-Diethyl.

Aminosilanes follow a unique reaction mechanism because of the presence of the basic

amine group.142 In particular, hydrolysis and condensation of aminoalkoxysilanes occur rapidly

because of the self-catalyzing ability of the basic amine group.69, 73, 142-145 Furthermore, the

silane and its hydrolysis and condensation products have excellent water solubility.69, 73, 142-145

The efficiency at which the aminoalkoxysilane reacts with surface silanol groups can be

increased by maximizing hydrolysis and limiting self condensation.143 This efficiency will

depend on a number of factors, most notably the number of amine moieties and whether the

amine is sterically and electronically hindered.139, 143, 144, 146

The rate of condensation of APTEOS with surface silanol groups on silica particles with

different porosity was previously studied by Okabayashi.66, 138 In these studies, kinetic

information was obtained for APTEOS via 29Si CP MAS (cross-polarization and magic-angle

spinning) NMR, DRIFT (diffuse reflectance infrared Fourier transform), and/or elemental

analysis.  The results reported (k ~ 10-2 to 10-3 s-1),66, 138 are similar to our results, but their

experiments were obviously more complex than the ones described herein. To our knowledge,

the condensation rates of other substituted aminoalkoxysilanes to silica have not been studied.
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Salon and coworkers, however, have qualitatively studied the hydrolysis and self-

condensation of substituted aminoalkoxysilanes in ethanol/water solutions by monitoring the

formation of hydrolyzed species and oligomeric species via NMR.139, 143, 144, 146 147 They noted

that in solution, hydrolysis and condensation were fast for all the aminosilanes studied, the rates

of which were strongly dependent on the number of amine groups and the presence of

substituents on the amine moiety.139, 144 For those precursors that contained more than one amine

group (i.e., Triamine), hydrolysis and self-condensation was greatly enhanced relative to the

monoamine.144 The presence of a bulky substituent on the amine, however, increased hydrolysis

times and restricted self-condensation.144 Likewise in a study on the catalytic effect of

substituted amines (primary, secondary, and tertiary) on the hydrolysis and condensation of

vinyltrimethoxysilane-grafted ethylene-propylene copolymer, it was reported that the amine with

the smallest substituent had the fastest rate of hydrolysis.72 The degree of cross-linking

(condensation) also followed the order: primary > secondary > tertiary amine.72 As can be seen

from the data in Table 4.2, the order of reactivity as evaluated from the gradient profile, follows

the same trend:  primary > secondary > tertiary amine. It can be concluded that an increase in

alkyl substitution on the amine (secondary and tertiary) group leads to a decrease in the rate and

efficiency of cross-linking due to steric crowding in the transition state.72

Another factor that could potentially influence reactivity is the basicity of the amine.  In

solution, basicity as defined by pKb values is typically: primary < secondary > tertiary.   For

example, the pKb in solution for n-propylamine, an analogue to APTMOS, is 3.47 while di-n-

propylamine and tri-n-propylamine, analogues of N-butyl and N,N-Diethyl, have a pKb of 3.00

and 3.35, respectively.148 Thus, the secondary amine is the strongest base, followed by the

tertiary and primary amines (secondary > tertiary > primary).  While the analogues of APTMOS
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and N,N-Diethyl have nearly identical pKb values (differing only by ~0.1 pKb unit) and thus,

similar basicities, they have very different reactivities, indicating that basicity is not a

determining factor. A similar conclusion was reached by Adachi and Hirano upon examining the

effect of amine compounds on the hydrolysis and condensation of vinyltrimethoxysilane grafted

ethylene-propylene copolymer, which was that the reactivity of the amine compounds did not

depend on their base dissociation constants.72

4.4.4 Gradient Amine Basicity

In addition to the differences in solution-phase basicity discussed above, the different

aminosilanes were also found to yield gradients having different basicities in the dry state.  The

basicity of the gradient surface and how it changes as a function of position can also be

ascertained from the XPS data.  The N1s band in the XPS spectra shown in Figure 4.1 appears as

a doublet with binding energies near 399 eV and 401 eV.  Each spectrum can thus be fitted to

two peaks, N1 and N2; the lower energy nitrogen peak is from the free amines (N1) and the higher

energy peak is due to protonated and H-bonded amines (N2).
67, 149 Hydrogen-bonding

interactions take place between the amine groups and neighboring surface silanol groups; the

nitrogen abstracts a proton from a neighboring silanol, in an acid-base reaction to yield the

protonated species.67, 136, 149-151 Figure 4.4 shows curve fitted N1s spectra obtained near the

bottom of the gradient (~12-13 mm from the top of the slide).  By comparing the ratio of the two

peaks, information can be obtained about the basicity of the surface bound amine groups as a

function of surface coverage in a single sample. The area ratio (N1/N2) of the high energy (N1) to

low energy (N2) peak varied for the different aminosilanes as shown in Figure 4.5.
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S4Figure 4.4. N1s high resolution XPS spectra curve fitted to obtain two peaks.
Spectra were collected near the bottom of the gradient.
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Based on the N1s area ratios, basicity in the dry state follows the trend:  Diamine ~ Triamine

< APTMOS < N-Butyl < N,N-Diethyl, consistent with vapor phase basicity that follows the

same trend.152 Choi and coworkers153 recently examined primary, secondary, and tertiary amines

on mesoporous silica and examined at the adsorption of CO2 and showed that the adsorption

amount and bonding affinity increased with basicity in the same order: primary, secondary and

tertiary. The area ratio is lower for the gradients deposited with di- and triamines, likely because

protonation of consecutive amines in Diamine and Triamine becomes more difficult. XPS

results from Metwalli and coworkers on APTEOS, Diamine, and Triamine coated glass support

this conclusion.151

For most of the films investigated, the peak area ratio, and hence the surface basicity, were

found to be relatively invariant with position along the gradient. Clear exceptions were found for

Figure 4.5.  Area ratio of the N1s high energy peak (protonated amine) to low energy peak
(free amine) for the different aminosilane precursors.  Inset:  Trend in the area ratio vs
distance along the length of the film from top (1 mm) to bottom (16 mm) for four line scans
acquired on the gradient film prepared from the N,N-Diethyl precursor.
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the most basic of the silanes investigated, N,N-Diethyl and the N-Butyl silanes, both show trends

to smaller values along the length of the gradient from top to bottom.  For the gradient films

prepared from the N,N-Diethyl silane, Figure 4.5 inset, the data was very distinct, depicting a

clear trend to smaller ratios at the 99.99% confidence level.  For N-Butyl, the data demonstrate a

similar trend at 94% confidence (Figure 4.6)

.

It is interesting that the extent of protonation is smaller at the bottom of the gradient

compared to the top.  The higher packing density at the bottom of the film may make it difficult

for the substituted amines to interact with surface silanol groups, thus decreasing the extent of

protonation.  Changes in hydrogen bonding interactions along the length of the gradient can alter

acid/base dissociation constants.  The close proximity of the amine groups at the bottom of the

gradient will favor intramolecular interactions, in turn altering pKb, and the extent of protonation.
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Figure 4.6. Trend in the area ratio vs distance along the length of the film from top (1 mm)
to bottom (16 mm) for three line scans acquired on the gradient film prepared from the N-
Butyl gradient.
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Such an effect has been studied before using individual nongradient films in solution prepared by

self-assembling carboxylic acid terminated alkanethiols on gold.154, 155 The pK value for acid

groups in a mixed monolayer, for example, were shown to be slightly smaller than in a pure film,

which was attributed to changes in hydrogen bonding interactions and solvation.154, 155 These

findings demonstrate an appealing characteristic of gradient surfaces – how one single sample

can be used to study surface density effects that would otherwise require several nongradient

samples to be made and studied one at a time.

4.5 Summary

The preparation of surface amine gradients with well-defined profiles (shapes) requires a

detailed understanding of the reactivity of aminoalkoxysilanes.  By understanding factors such as

reactivity, basicity, and steric effects, it is possible to engineer surface chemical gradients with

carefully controlled properties in order to achieve a desired outcome.  From a different

perspective, gradient surfaces prepared from controlled-rate infusion provide a relatively simple

and unique way to evaluate the rate of condensation of silane precursors with surface silanol

groups as well as how the chemical properties (e.g., basicity) change as surface density changes.

In this work, six aminoalkoxysilanes having different levels of substitution and/or

differing numbers of amine groups were chosen for study.  The reactivity of the aminosilane with

surface silanol groups clearly influenced the gradient profile both in terms of its shape and

degree of saturation.  Those precursors with more than one amine group reacted and reached

saturation more quickly than aminosilane precursors with just one amine group.  Of the

monoamine-based silanes, reactivity followed the trend:  primary > secondary > tertiary.

Saturation was not attained for the secondary and tertiary amines during the 30 min infusion time
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scale at the concentrations used. The results described herein can be explained in terms of steric

hindrance resulting from the substitution around the amine group. Apart from the direct

applications like cell adhesion studies and chromatographic stationary phases, these amine

functionalized surfaces are ideal surfaces to further modify and build more complex platforms.

The amine group can be chemically linked to other reagents (proteins, enzymes, dyes) in solution

via simple covalent coupling strategies. The Diamine and Triamine gradients can be used to

prepare metal ion gradients that make use of the chelating abilities of these functional groups.

Chapter 5 will cover such metal chelation gradients on amine modified surfaces.
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5. Fabrication and Investigation of Surface Metal-Chelation Density Gradients Prepared

by Controlled-Rate Infusion.

5.1 Abstract

Aminosilanes containing chelating ligands such as ethylenediamine and diethylenetriamine have

been used in this work to form gradients in metal-amine complexes on a base-layer coated

silicon wafer. This was accomplished by preparing surface amine gradients by controlled-rate

infusion (CRI) using these chelating aminosilanes and then exposing them to a metal ion solution

to form the metal-complex gradients through chelation. CRI is a well-established method for the

preparation of chemical gradients of various length scales for a broad range of applications. This

approach is based on controlling the extent of reaction on a surface via exposure/contact time of

the substrate to the silane solution. In this work, two metal ions, copper (Cu2+) and zinc (Zn2+),

were used for metal coordination with surface gradients of ethylenediamine and

diethylenetriamine ligands. X-ray photoelectron spectroscopy (XPS) was used to characterize the

gradient profiles of the amine as well as the metal complexes. Metal complex formation was

investigated along the diamine and triamine gradient surfaces with different gradient profiles

prepared using different concentrations of aminosilanes. The profile plot of normalized peak area

ratio of N1s to metal 2p peaks showed a variation in metal-amine coordination number along the

gradient. XPS results revealed that Cu2+ ion formed a gradient in metal-amine complex density

whereas Zn2+ formed a gradient in metal-amine coordination number along the gradient. Apart

from providing a simple approach for varying metal ion concentration on surfaces through

chelation, this research can also be helpful to study the effect of metal complexation on surfaces
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with strategically varied ligand concentration. Also, a gradient in ligand density on a

chromatographic support will be useful in the separation and concentration of metal ions.

5.2 Introduction

Silane coupling agents have been widely used to alter the surface properties of silica and metal

oxide surfaces.156-160 Metal binding on silica surfaces is one such area where the non-

hydrolyzable groups on the alkoxysilanes such as amines and thiol groups etc., can act as ligands

to form metal ion complexes.161-163 This is usually achieved in two different ways: (1) Surface

modification with the ligand-modified silane followed by treatment with the metal ion and (2) by

directly grafting the metal-ligand complex, which is prepared separately.164 Silica surfaces

grafted with amine groups have been widely used to bind metals by forming metal-amine

complexes.165-168 These surface metal-amine complexes were formed with various metals such as

nickel and copper, for applications in catalysis,169-171 separation sciences,166, 172-175 solid phase

extraction176 etc. Copper immobilization through the amine groups in organosilanes is one of the

well-known methods for the preparation of packings for complexation chromatography.166, 172, 173,

175, 176 Another notable application of ligand immobilization on surfaces such as silica is the

separation of metal ions by column177 and thin layer chromatography.178-180

In this work, surface gradients of chelating amine ligands, such as ethylenediamine and

triethylenediamine were prepared by controlled-rate infusion (CRI) and subsequently metal-

complex gradients were formed by exposing these gradients to metal ions in solution. The CRI

approach has been shown to be a very effective and straight-forward method for preparing

surface chemical gradients.74 CRI is a contact-time based approach where the contact time of the

precursor solution with the substrate is gradually varied to form continuous chemical gradients.74
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It is accomplished by infusing a freshly prepared silane solution into a vial containing the

substrate. This method has a unique advantage of showing incredible control over the gradient

profile by simply changing the concentration of silane solution and infusion rates.74 In our

previous work, gradient profile control was investigated using this approach by varying and

programming the infusion rates. It was shown that the CRI approach is capable of forming

surface gradients with strategically controlled gradient profiles.14, 74 Surface chemical gradients

were prepared by this approach were applied for chromatographic separations14, 181 (Chapter 5)

and to study the reactivity of precursor solutions (Chapter 4).182 In this Chapter, diamine and

triamine gradients were prepared using different concentration of silane solutions to obtain

gradients with different steepness.

Cu2+ and Zn2+ complexes were formed on ethylenediamine and diethylenetriamine

gradients on planar support. X-ray photoelectron spectroscopy (XPS) was used to evaluate the

variation in surface densities of the metal ion relative to the ligand along the length of the

gradient. In the case of copper, metal complex formation depended on the ligand density for both

the diamine and triamine gradients. However, zinc complex formation was almost independent

of ligand density along the gradients except at very low concentration of amine density. This

approach of metal-complex gradient preparation on silica substrates is not only useful for the

chromatographic separation of metal ions but also useful for the high-throughput investigation of

metal complexation at different ligand concentrations.

5.3 Experimental Section

5.3.1 Sample Preparation
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(3-Trimethoxysilylpropyl)Diethylene triamine (triamine, 97%), was purchased from

Gelest, Inc. (N-3-Trimethoxysilylpropyl)ethylene diamine (diamine, 97%), Tetraethoxysilane

(TEOS, 98%), dimethyldiethoxysilane (DMDEOS, 97%) and 3-aminopropyltriethoxysilane

(APTEOS, 99%) were purchased from Acros Organics. All the silanes were used as received.

Silicon wafers (University Wafer, B-doped, <111>) were cut to the appropriate size (1 x 2 cm)

and then cleaned with fresh conc. H2SO4:H2O2 (70:30) for 10 minutes at 70º C in a water bath

(CAUTION: Piranha solutions are extremely dangerous and react violently with organic

materials). The procedure for the preparation of the dimethyl base-layer coated substrate using a

sol containing TEOS and DMDEOS was described in Chapter 3. Once the base-layer coated

substrates were prepared and dried for 12 hours under vacuum at room temperature, they were

subsequently soaked in ethanol for 10 to 12 hours for stabilization before the gradient

preparation.

Surface amine gradients were prepared by simply infusing a freshly prepared aminosilane

solution into a vial containing the base-layer coated Si wafer at a controlled rate using a syringe

pump (NewEra, NE -1000). During the infusion, the base-layer coated substrate was exposed to

the aminosilane solution for a different timescale along the length of the substrate, which

produces a gradual variation in amine concentration from top to bottom (see Chapter 1 and

Chapter 3). The aminosilane solution for infusion was prepared by mixing ethanol : silane : water

in slightly different ratios. To prepare the metal-amine complex (Cu2+ and Zn2+) gradient film

from the diamine and triamine surface gradients, these amine gradients were soaked in

CuSO4/ZnSO4 solution (0.1 M in water) for ~ 3 hrs followed by rinsing with water and blowing

dry with nitrogen.

5.3.2 XPS measurements
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X-ray photoelectron spectroscopy (XPS) was performed with a ThermoFisher ESCAlab

250 imaging X-ray photoelectron spectrometer (Al K (1486.68 eV), 500 m spot size, 50 eV

pass energy, 0.1 eV step size). Samples were usually placed on top of a piece of conducting tape

on a 5 x 2 cm sample holder. XPS spectra were acquired in regular fashion (typically every 1-2

mm) across the wafer starting about ~ 1 mm from the edge (line scan).  Spectra were calibrated

by taking the C1s peak as occurring at 284.6 eV.  Details of XPS data processing were described

in Chapter 2.

5.4 Results and Discussion

5.4.1 Cu2+-amine complex gradients

The metal-complex gradients were prepared by exposing the di and triamine gradients to

the metal-ion solution. The substrate used in this method is the same base-layer described in

Chapter 3, which was formed by spin-coating the sol prepared by co-hydrolysis/co-condensation

of TEOS and DMDEOS on a silicon wafer. In the case of copper, three different concentrations

of aminosilane solution (Diamine, Triamine) were used for infusion to obtain different gradient

profiles to study the Cu-amine gradient formation. The aminosilane solutions were prepared by

mixing ethanol : silane : water in the volume ratios of 5 : 0.05 : 0.005 (H), 5 : 0.025 : 0.0025 (M),

and 5 : 0.01 : 0.001 (L).  The copper amine gradient prepared with high (H), medium (M) and

low (L) concentration of aminosilanes were termed as Cu-Di-H, Cu-Di-M and Cu-Di-L

respectively. Similarly, triamine gradients were named as Cu-Tri-H, Cu-Tri-M and Cu-Tri-L.

The silane solutions were taken for infusion immediately after preparation. The infusion rate for

the preparation of all the above mentioned gradients was 0.6 mL/min and infusion times were ~

4 minutes. The total infusion volume in each case was ~2.4 mL for a ~ 2 cm long base-layer

coated substrate. Figure 5.1 shows the overlaid N1s spectra and Cu2p spectra of Cu-diamine
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gradients G-Di-H, Cu-Di-M and Cu-Di-L. The N1s peak arises because of nitrogen present in the

diamine groups and the Cu2p peak forms because of Cu2+ binding with the amine groups through

chelation. The binding energy for the N1s peak is 399.9 ± 0.1 eV. In the Cu2p spectrum, two

major peaks are observed (Cu2p3/2 and Cu2p1/2) peak with the binding energy values of 933.3 ±

0.2 eV and 953 ± 0.2 eV respectively. A small peak at binding energy 944.2 ± 0.2 eV was

observed sometimes, which corresponds to the Cu2p3/2 satellite peak. The binding energy values

are closely matching with those reported for Cu(II) complexes in powder form by Roe et al.183
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Figure 5.1. N1s and Cu2p spectra of Cu2+-diamine complex for three different gradient
profiles. Cu-Di-L, Cu-Di-M and Cu-Di-H. The arrow indicates gradient direction from low
amine end to the high amine end.
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To more easily see how the intensity of N1s and Cu2p3/2 peaks vary along the gradient,

profile plots were obtained by integrating the area under the N1s peak for N and the more intense

Cu2p3/2 peak for Cu. Figure 5.2A is the profile plot of N1s peak area (area versus distance along

the gradient) for all three gradients, and Figure 5.2B is the corresponding Cu2p3/2 profile plot.

The profile plot clearly shows that the variation in peak area for both N and Cu is gradual from

the top to the bottom of the substrate.  The shape of the N1s gradient for both the diamine and

triamine are similar to those noted in Chapter 4 Section 4.4.   Both the ligand density and Cu-

amine complex density vary in a similar fashion along the length of the gradient. Cu-Di-M and

Cu-Di-H showed similar N1s and Cu2p profiles. It might be due to the fact that the magnitude of

amine deposition between the two silane concentrations at this short time period (4 min) is not

significantly different.

Figure 5.2. Peak area profile of N1s (A) and Cu2p (B) peaks along the Cu2+--diamine
complex gradients at three different gradient profiles (Cu-Di-L, Cu-Di-M and Cu-Di-H).
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Similar to Cu-diamine, Cu-triamine gradients were also prepared with three different

concentrations; Figure 5.3 shows the overlaid N1s spectra and the corresponding Cu2p3/2 spectra

of Cu-diamine gradients of Cu-Tri-L, Cu-Tri-M and Cu-Tri-H. Again, the N1s peak arises

because of nitrogen present in the triamine groups and the Cu2p peak forms because of Cu2+

binding on amine through chelation. The binding energy of N1s is 399.9 ± 0.1 eV. In the Cu2p

spectrum, two major peaks are observed for Cu2p3/2 and Cu2p1/2 peak with the binding energy

values of 933.3 ± 0.2 eV and 953 ± 0.2 eV. A small peak at binding energy 944.2 ± 0.2 eV was

observed in all the Cu2p spectra which correspond to Cu2p3/2 satellite peak. The satellite peak

intensities are proportional to the Cu2p peak intensities and hence triamine shows relatively

more intense satellite peaks.

The N1s area reported in this work is significantly lower than those reported on Chapter 4

which is mainly because of the 5 to 25 fold higher concentration of silane used in the earlier

work (Chapter 4). Also, in Chapter 4, the N1s area was normalized by the number of amine

groups in the precursor. So, the N1s areas of diamine and triamine were divided by two and three

respectively. It was observed that the triamine area were lower than the diamine area after

normalization because of steric factors. However, in this work, after dividing the N1s area by

two and three for diamine (Cu-Di-M) and triamine (Cu-Tri-M), the values are not significantly

different except at position ‘0’cm (Table 5.1). The low concentration of aminosilane used in this

work is the reason why the triamine are is not significantly lower than diamine as reported in

Chapter 4, Section 4.4.

Figure 5.4A is the profile plot of N1s peak area (area versus distance along the gradient)

for all three gradients and Figure 5.4B is the Cu2p3/2 profile plot. The N1s profile plot reveals

that the gradient profiles depends highly on the concentration of aminosilane in solution. The
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steepness of the Cu2p3/2 gradient also varied in a similar way when compared to N1s profile,

again indicating that the Cu chelation follows a simple binding mechanism with these amines.

In
te

ns
ity

 x
 1

03

12

16

20

30

36

42

48

In
te

ns
ity

 x
 1

03

12

16

20

30

36

42

48

Binding energy (eV)
395400405410

In
te

ns
ity

 x
 1

03

12

16

20

Binding energy (eV)
930940950960

30

36

42

48

N 1s (Cu-Tri-L)

N 1s (Cu-Tri-M)

N 1s (Cu-Tri-H)

Cu 2p (Cu-Tri-L)

Cu 2p (Cu-Tri-M)

Cu 2p (Cu-Tri-H)

Figure 5.3. N1s and Cu2p spectra of Cu2+-triamine complex for three different gradient (Cu-Tri-L,
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Table 5.1. N1s area of diamine (Cu-Di-M) and trimaine (Cu-Tri-M)gradients after
normalization for the number of amine groups

Distance (cm)

Cu-Di-M Cu-Tri-M

N1s area/2 N1s area/3

0.0 4162 2469
1.6 5229 4516
3.2 5732 5237
4.8 5931 5714
6.4 6172 6040
8.0 6132 6194
9.6 6402 6306

11.2 6565 6276
12.8 6666 6428
14.4 6549 6825

16.0 6403 6642

17.6 6750 6670
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5.4.2 Controls

Control experiments were done to show that the Cu2p peak observed in XPS is only due

to treatment of the amine gradient with the Cu2+ ion solution. Another control experiment is to

show that the Cu binding is only through chelation on this surface. First, to firmly establish that

the Cu2p peaks observed in the XPS spectra originated from the solution and not from

adventitious impurities in the infusion solution and/or atmosphere, N1s and Cu2p3/2 peaks were

compared for the negative and positive control. In this case, the negative control (NC) was a

uniformly modified diamine surface and the positive control (PC) was Cu2+ bound to a uniformly

modified- diamine surface through chelation. These materials were formed by first immersing

Figure 5.4. Peak area profile of N1s (A) and Cu2p3/2 (B) peaks along the Cu2+--triamine
complex gradients for three different gradient profiles (Cu-Tri-L, Cu-Tri-M and Cu-Tri-H).
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two base-layer coated substrates in diamine solution (ethanol: silane ratio of 5 : 0.1) for 5

minutes to self-assemble the chelating agent to the surface. This forms two uniformly diamine

modified surfaces.  One of the two self-assembled samples served as the negative control and the

other was soaked in the Cu2+ solution to form the positive control. Figure 5.5 shows both the

N1s spectra and Cu2p spectra of both the NC and PC. The N1s spectra for both the PC (soaked

in Cu2+) and the NC (not soaked in Cu2+) are all of similar intensity yielding profile plots that

show little variation in the N peak area vs distance, as expected for an uniformly diamine

modified surface.  The N1s peak area is slightly smaller for the PC compared to the NC and is

attributed to the surface sensitivity of XPS. The presence of metal ions decreases the signal

intensity due other elements present on the surface.184 Cu was only observed on the PC, which

was purposely soaked in the Cu2+ solution.  Again, the area under the Cu2p3/2 peak was relatively

constant with distance consistent with the uniform layer of Cu2+-diamine complex on the surface.
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Another control experiment was performed to confirm whether the Cu-amine complex

formation would form with an amine group containing only one N.  A gradient was prepared

with 3-APTEOS (ethanol : silane ratio of 5:0.25) at an infusion rate of 0.1 mL/min (~ 30

minutes) and soaked in diamine solution. Figure 5.6A and B below shows the N1s and Cu2p

spectra respectively and their corresponding profile plot is shown in Figure 5.6C and D. It clearly

shows that there is no copper binding on base-layer surface that contains monoamine and the Cu-

amine complex formation is through chelation.

Cu2+ ion binding however, was observed on aminopropyl (monoamine) modified silica

gel prepared by mixing tetraethoxysilane and APTEOS, which is contradictory to our result.185

However, in our work with a thin film of the monoamine silane, the  Cu2+ , which could have

bound weakly, to the monoamine was rinsed off while washing the substrate with water. This

indicates Cu2+ binding is observed only when the surface contains the chelating ligand. A similar

effect where chelation is necessary for metal binding on surface was observed by Moriguchi and

coworkers in which ruthenium complex formation occurs on diamine SAM through chelation

and not in monoamine.186
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5.4.3 Metal-amine coordination number along the gradients

Coordination number is the number of ligands bound to the metal ion. Cu2+ can form

complexes with 1:2 and/or 1:3 metal : ligand ratio with diamine. Hence, it would be interesting

to see if and how the relative coordination number of metal-di/triamine complexes varies with

ligand density. This was accomplished by determining the ratio of normalized area of N1s to

Cu2p3/2 peak. The normalized area takes into account the XPS sensitivity factors of N1s and

Cu2p3/2. The N/Cu ratio cannot be taken as coordination number of metal-amine complexes

because of the presence of free amine groups on the surface which are not bound to metal ion.

However, if this ratio varies, it suggests that relative coordination number of metal-amine

complex also varies. The variation in coordination number of metal-amine complex on ligand

density has not been studied extensively so far. Cu2+ forms stable bis complex (1:2 metal:ligand)

with diamine.187 Based on this and our highly correlating gradient profiles for N1s and Cu2p3/2,

the N/Cu ratio is not expected to vary along the gradient. However, it would be different for

other metal ion (Zn2+) studied here. The step-by-step procedure for calculating the normalized-

area ratio for N1s and Cu2p3/2 was described in Chapter 2.

Figure 5.7A and B shows the profile plots of the normalized area ratio (N1s / Cu2p3/2) for

the three Cu2+-diamine and Cu2+-triamine gradients. The N/Cu ratio for diamine is the range of 9

to 12 and for triamine is 3 to 5. This shows that there are a greater number of free amine groups

present in the diamine gradient when compared to triamine. This is also reflected in Cu2p3/2

profile plot of diamine and triamine (Figure 5.2B and Figure 5.4B) where the area of Cu2p3/2

peak for diamine is about 4 times lower than triamine. The diamine is a bidentate ligand whereas

Figure 5.6. N1s (A) and Cu2p (B) spectra along APTMOS gradient soaked in Cu2+ (C) and (D)
are the profile plots of N1s area and Cu2p3/2 area. Arrow indicates the direction of the gradient
from low amine end to high amine end.
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triamine is a tridentate ligand and the above result indicates that the Cu binding increases with

denticity of the ligand. Figure 5.8 A and B shows diamine coordination on the surface

structurally and schematically with free diamine on the gradient surface. Figure 5.8 C shows the

effect of free amine groups on N/Cu ratio which in our case is relatively high for diamine when

compared to triamine.

From this profile, it can be observed that except for the first point (0 mm), the ratio has

not changed significantly considering the experimental error. The same result is observed for Cu-

triamine gradient where the normalized area ratio of N1s/Cu2p3/2 did not vary with distance from

the top to the bottom of the substrate (Figure 7B).
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5.4.4 Zn2+ amine gradients

Similar to the Cu-amine complex, Zn-amine complex gradients were also formed from ethylene

diamine and diethylenetriamine gradients prepared by the controlled-rate infusion approach. In

A B

Figure 5.8. Structural (A) and schematic (B) representation of Cu2+ diamine
complex on gradient surface. (C) Effect of free amine groups on N/Cu ratio.

C
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the case of Zn-amine gradients, diamine and triamine gradients were prepared from two different

concentrations of diamine (Zn-Di-H and Zn-Di-L) and triamine (Zn-Tri-H and Zn-Tri-L)

respectively to obtain gradients with different steepness. These gradients were then treated with

Zinc Sulphate solution (ZnSO4) before characterization using XPS. As in the case of the Cu-

amine gradients in which the Cu2p3/2 peak was analyzed, here the Zn2p3/2 peak was used.

Figure 5.9 shows the N1s and Zn2p overlaid spectra of Zn2+-triamine gradient with two gradient

profiles (Zn-Tri-L and Zn-Tri-M). In the Zn2p spectrum the peak at binding energies 1022.3 eV

and 1045.5 eV corresponds to Zn2p3/2 and Zn2p1/2 respectively. The binding energy values are

matching with that of Zn2p spectra obtained for Zn2+ doped films reported by Mu and

coworkers.188

Since the intensity of Zn2p3/2 peak is significantly higher than Zn2p1/2 peak, the peak area

of Zn2p3/2 peak was evaluated. The variation in the area of the Zn2p3/2 peaks along the length of
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the gradient is shown in figure 5.9. The profile plot of Zn2p3/2 peak area of Zn-triamine gradients

(figure 5.10B) at two different concentrations reveals that the Zn content increases early in the

profile and then saturates unlike Cu2p3/2 profile, which is similar to the N1s profile. This shows

that the coordination of the metal ions such as Zn2+ follows a different trend when compared to

Cu2+ with chelating triamine ligands.

Since there was not much trend in the Zn content on the triamine gradient, it is important

to verify the trend in relative coordination number of Zn–diamine complex along the gradient.

Zinc is known to form coordination complexes with a range of coordination numbers with

tetrahedral, square pyramidal, trigonal bipyramidal and octahedral geometries depending on the

availability of ligand sites.27 The coordination was assessed by verifying the profile of the

Figure 5.10. Peak area profile of N1s (A) and Zn 2p3/2 (B) peaks along the Zn2+--triamine
complex gradients at two different gradient profiles (Zn-Tri-L and Zn-Tri-M).
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normalized area of N1s to Zn2p3/2 along the length of the gradient. Figure 5.11 shows the profile

plot of the normalized area ratio of Zn-triamine gradients at two concentrations, which takes into

account the sensitivity factors of Zn and N, which are 4.8 and 0.42. This plot explicitly shows

that the ratio gradually increases from the low amine end to the high amine end of the gradient.

This is an indication of increasing trend of the coordination number of the Zn-triamine complex.

This is the case for Zn2+-triamine; however, Zn2+-diamine complex formation along the gradient

is slightly different.

As mentioned above, Zn2+-diamine gradient was formed using two different concentrations of

aminosilane. Figure 5.12 shows the overlaid N1s spectra and Zn2p spectra along Zn-diamine

gradient (Zn-Di-L and Zn-Di-M). Again, the N1s spectra reveal that the diamine concentration

varies along the gradient and Zn2p spectra shows only a slight increase.

Figure 5.11. Normalized peak area ratio (N1s to Zn 2p3/2) of the Zn2+-triamine gradients.
Two gradients in this case are formed with different profiles and are shown in black and red
(low and medium).
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The profile of the N1s peak area (Figure 5.13A) and the Zn2p3/2 peak area (Figure 5.13B)

are similar to those obtained for triamine, except at very low diamine concentration (N1s peak

area < 8000 CPS eV) where Zn2p3/2 peak also shows a low intensity. The Zn2+-diamine complex

formation on the diamine gradients shows a slightly increasing trend from the low amine to the

high amine end of the gradient before it becomes saturated. This is slightly more pronounced in

Zn-Di-L because of the fact that the amine surface density is less for the diamine gradient

prepared from such a low concentration of aminosilane (0.2% v/v).
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The above mentioned effect of Zn-D-L can also be observed in the normalized area ratio

profile as well (Figure 5.14). This clearly shows that Zn-D-L gradient (black symbols), which is

prepared with a low concentration of diamine, shows a shallow gradient profile of N1s/Zn2p

ratio, in which the ratio just varied by 1 unit across the gradient. This is mainly because the

diamine (ligand) density is very low to show a steep variation in Zn2+-diamine coordination

number as in the case of Zn2+-triamine gradients.

Figure 5.13. Peak area profile of N1s (A) and Zn 2p3/2 (B) peaks along the Zn2+--diamine
complex gradients at two different gradient profiles (Zn-Di-L and Zn-Di-M).
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Based on the above results, it can be seen that there is an obvious difference in complex

formation of Cu2+ and Zn2+ on the chelating ligand density gradients. Cu2+ forms a coordination

complex based on the stability of the complex and the geometry did not vary along the gradient,

unlike Zn2+ which has coordination flexibility189-191 and can form complexes with coordination

number ranging from 4 to 6.192 Fujita and coworkers have reported the formation of bis (1:2) and

tris (1:3) complexes of Zn2+-ethylenediamine in solution by varying the mole ratio of Zn2+ ion

and the ligand.193 This suggests that the gradual variation of N/Zn ratio with distance on the

ligand density gradient is due to the difference in coordination along the gradient. The relatively

low ratio (4 to 5 for diamine and 5 to 7 for triamine) suggests that there may be fewer free

amines present. In the case of Cu2+, the N/Cu ratio remains almost the same (except at ‘0’ cm

position) along the gradients unlike Zn2+ gradients, in which there is a linearly increasing trend

Figure 5.14. Normalized peak area ratio (N1s to Zn 2p3/2) of Zn2+-diamine gradients. Black
symbols correspond to the Zn-Di-L profile and the red is for the Zn-Di-M gradient profile.

Distance, mm

0 5 10 15 20

N
1s

/Z
n2

p 3/
2 ra

tio

3

4

5

6

Zn-Di-L
Zn-Di-M



www.manaraa.com

108

of N/Cu ratio (Table 5.2). Figure 5.15 schematically shows the variation in coordination number

of Zn2+-diamine complex on the low and high amine side of the gradient.

Figure 5.15. Structural representation of Zn2+-diamine complex on the top and bottom of
the gradient based on N/Cu ratio.

Position(cm) Cu-Di-L Zn-Di-L Cu-Di-M Zn-Di-M Cu-Tri-L Zn-Tri-L Cu-Tri-M Zn-Tri-M
0.0 81.2 4.2 15.3 3.7 8.1 5.4 6.6 4.8
1.6 10.3 4.0 11.0 3.7 4.5 5.0 4.0 5.3
3.2 10.5 4.3 9.8 4.0 4.2 5.2 3.9 5.2
4.8 9.8 4.3 10.5 4.2 4.7 5.2 3.9 5.4
6.4 9.5 4.4 9.8 4.1 4.1 5.6 3.9 5.5
8.0 8.8 4.5 9.4 4.4 4.3 5.3 3.9 6.0
9.6 8.8 4.5 10.0 4.6 4.2 6.2 3.8 5.9
11.2 9.0 4.6 9.8 4.7 4.1 6.3 3.7 7.4
12.8 9.6 5.0 9.5 5.0 3.9 6.7 3.8 7.3
14.4 9.4 5.1 10.2 5.1 4.0 7.1 3.9 9.0
16.0 11.3 5.0 10.1 5.3 3.9 6.4 3.7 7.9
17.6 10.1 5.1 11.4 5.1 3.9 6.4 3.8 6.9

Table 5.2. N/Metal ratio (normalized area) of Cu2+ and Zn2+ gradients
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5.5 Summary

A unique application of the CRI approach was shown previously (Chapter-5) where the gradient

formation by CRI method was used to study the reactivity of the precursor silanes. Similarly,

another application was shown in this Chapter where the amine groups on the gradients act as

chelating ligands. Surface gradients formed with amines containing more than one amine groups

such as ethylenediamine and diethylenetriamine were used for metal complexation. Two metal

ions with different chelating properties (Cu2+ and Zn2+) were allowed to bind with the ligand in

the gradients. These two metals showed different trends for the metal-amine complex formation

by chelation on the ligand density gradients. Cu2+ ion formed gradients in Cu-amine complex on

the surface of diamine and triamine gradients with different gradient profiles. On the other hand,

Zn2+ did not exhibit a gradient in Zn-amine complex density along the surface. However, the

relative coordination number of Zn2+-amine complex varied as it moves along the gradient from

top to bottom. This research has opened up a simple way for not just preparing gradients in metal

concentration on silica surfaces for applications such as metal-chelate affinity chromatography,

but shows that this technique is also useful for studying metal-ligand coordination at various

surface ligand densities.
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Chapter 6. Continuous Stationary Phase Gradients for Planar Chromatographic

Media

Adapted from Kannan, B.; Marin, M. A.; Shrestha, K.; Higgins, D. A.; Collinson, M. M., Journal of

Chromatography A 2011, 1218 (52), 9406-9413

6.1 Abstract

A simple, elegant method for the formation of a continuous stationary phase gradient for use

in chromatographic separations is described.  Its applicability to separation science is

demonstrated by using thin-layer chromatography as a test case.  Gradient stationary phases were

formed on activated high performance thin-layer chromatography (HP-TLC) plates using a CRI

approach which has been elaborately dealt in previous chapters. The SiOH groups on the

activated HP-TLC plates were reacted with 3-aminopropyltriethoxysilane (APTEOS) in a time

dependent fashion to control the rate of APTEOS infusion into the deposition reservoir.   The

shape (profile) of the gradient was controlled by the rate of infusion and imaged by taking

advantage of the concentration-dependent color formation reaction between amine groups and

ninhydrin. The advantages of such gradients in optimizing the retention and separation of various

components in different mixtures was illustrated using mixtures of (1) four weak acids and bases

and (2) three widely-used over-the-counter drugs.  The separation of the individual components

on the gradient stationary phase was clearly improved relative to those on either traditional

normal-phase TLC plates or uniformly amine-modified TLC plates. Precise control over

component retention and separation was also demonstrated by strategically modifying the

steepness of the gradient.
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6.2 Introduction

The separation of complex, multicomponent mixtures by liquid chromatography has

always been an exciting and challenging area for separation scientists. The difficulties associated

with separating mixtures of ever increasing complexity has led to the development of numerous

new methods and technologies, including gradient elution methods, hydrophilic interaction

chromatography (HILIC),194 ultra high pressure separation,195 sol-gel columns,196, 197 silica and

polymer monolithic columns,198-202 porous polymer monoliths for TLC,203, 204 hierarchical

stationary phases,205, 206 colloidal crystal packings,207, 208 and micropillar based columns.209-212 In

gradient elution chromatography, the eluent strength is varied during separation.213 This method

has proven to be very successful for separating mixtures of components having large differences

in polarity.213 As a result, there have been numerous applications of gradient elution in high

performance liquid chromatography (HPLC) for the separation and quantitation of a wide range

of analytes, from simple compounds to complex biological mixtures and metabolites. A number

of gradient separations methods have also been demonstrated for use in thin layer

chromatography (TLC).89 These rely upon temporal variations in solvent content (solvent

gradients), the demixing of multicomponent solvents on the TLC plate, exposure to different

solvent vapors, and controlled evaporation of mobile phase components during the separation.77,

89, 214, 215

An alternative paradigm for changing the mobile phase composition to effect a separation

is to change the composition of stationary phase (such as adsorbents, bonded phase etc.,) and use

what are termed ‘stationary phase gradients’. Such gradients for planar chromatographic

separations have been prepared since 1960 for various applications.89, 91-93, 216 In most of the TLC

stationary phase gradients reported so far, either different bonded phases or adsorbents (such as
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silica, cellulose etc) were combined together using a specified tool or manually. Recently, silica

gel and cellulose adsorbents were combined together to form adsorbent gradient to separate

water soluble vitamins.90 While gradient stationary phases have shown enhanced resolution

compared to stationary phases of uniform composition, these methods are not simple to

implement, except in few cases where the adsorbents were bound together using a clamp.90

Moreover, those approaches typically produce discontinuous gradients (i.e., stepwise gradient)

and are not easily adapted to form gradient stationary phases on any type of platform including

planar supports, capillaries, and microfluidic channels. Clearly, there exists a need to develop

efficient strategies for creating and implementing continuous gradient stationary phases as well

as evaluating their performance relative to non-gradient stationary phases.

In this work, we report a simple, inexpensive, and relatively rapid approach to prepare

continuous stationary phase gradients using TLC as the proof-of-principle separation technique.

We demonstrate the utility of these new gradient TLC plates in separations of a simple mixture

of four weak acids and bases, and a mixture of three over-the-counter drugs. Our approach to

gradient preparation utilizes silane chemistry, specifically the reaction of 3-

aminopropyltriethyoxysilane (APTEOS) with surface Si-OH groups on the porous silica

comprising the TLC stationary phase. When this chemistry is used in conjunction with

“controlled-rate infusion”,74 a gradient in amine functionality can be prepared over the full length

of each TLC plate. For analyte mixtures with components that have a wide range of

physicochemical properties like hydrophilicity/hydrophobicity, acidity/basicity etc., optimum

separation cannot easily be achieved on a single stationary phase such as silica gel or amine

modified silica gel. In such cases, a continuous stationary phase gradient would allow the

analyte-stationary phase interactions to vary along the bonded stationary phase packing.  In this
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work, proof of principle demonstrations are obtained by separating four weak acids/bases whose

pKas range from ~4.2 to 9.5.  In addition, through gradient profile control, we also show the ease

with which three commonly used drugs (acetaminophen, diphenhydramine hydrochloride and

doxylamine succinate) can be separated and their retention factors controlled.

Once the gradients containing amine groups was successfully prepared, characterized and

applied for a simple separation, CRI was extended to prepare gradients on TLC plates with other

bonded phases such as phenyl and cyano, which are widely used in normal and reverse phase

separations. Phenyl gradients on TLC plates were prepared by infusing a phenyltrimethoxysilane

(PTMOS) sol at a controlled rate into a reaction vial containing an activated silica TLC plate

containing a fluorescent dye. The variation in phenyl group density on silica surfaces was

visualized under UV light (254 nm). Because the phenyl groups quench the green fluorescence, a

phenyl gradient TLC plate will exhibit a gradual variation in fluorescence quenching under UV

light (254 nm). In case of the cyano gradient, the infusion procedure is same but the

characterization of the gradient was achieved using an FTIR microscope (reflection mode). The

intensity of the sharp peak at 2250 cm-1 corresponds to the CN stretch variations along the TLC

plate for the gradient in cyano group.

6.3.  Experimental

6.3.1.  Reagents

3-aminopropyltriethoxysilane (APTEOS, 99%), phenyltrimethoxysilane (PTMOS, 97%) and

3-(triethoxysilylpropyl)propionitrile (CNTEOS, 97%) were purchased from Acros Organics.

Benzoic acid (BA), 3-Aminobenzoic acid (ABA), 2-aminopyridine (APy) and 4-aminophenol

(APh) were purchased from Sigma-Aldrich. Acetaminophen (Ac), diphenhydramine

hydrochloride (Dp) and doxylamine succinate (Dx) were purchased from Fisher Chemicals. Drug
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tablets (CVS brand) containing acetaminophen (500 mg tablet), diphenhydramine hydrochloride

(25 mg tablet) and doxylamine succinate (25 mg tablet) were obtained from CVS pharmacy.

One acetaminophen pill, two diphenhydramine hydrochloride and two doxylamine succinate

pills were individually crushed using a mortar and pestle. Diphenhydramine hydrochloride and

doxylamine succinate were stirred for 1 hour in small vials containing 2 mL of chloroform while

acetaminophen was stirred for an hour in 5 mL of ethanol. After stirring, each solution was

syringe filtered (0.45 micron), transferred into clean 5 mL vials, and 50 µL aliquots were mixed

in a 1 mL vial for spotting on the TLC plates.

6.3.2  Stationary Phase Preparation

HP-TLC plates (Whatman 100 µm thick, 5 µm particle size, 254 nm fluorescence excitation)

were cut in the size of 10 x 1.5 cm and were activated by drying in an oven for 20 minutes at ~

100 °C. After the plates cooled to room temperature, they were soaked in ethanol. The soaking

helped remove adsorbed impurities from the plates and also acts as a wetting process to

minimize wicking (solvent transport by itself in porous silica plates) during gradient fabrication.

Controlled rate infusion for gradient formation was accomplished by placing the TLC plate in a

suitable reaction chamber (in this case, a 25 mL graduated cylinder).  An APTEOS solution was

then infused into the chamber at a rate that ranged from 80 mL/hr to 1000 mL/hr using a syringe

pump (New Era, NE-1000). The composition of the APTEOS solution was

ethanol:APTEOS:H2O (100:10:2) v/v.  The total time for infusion ranged from ~1.5 min to 17

min, depending on the flow rate. The volume of infusion was 22.5 mL. The TLC plates were

immediately removed from the cylinder, thoroughly rinsed with ethanol, and dried. Positive

controls (PC) were made by simply soaking the activated TLC plates in APTEOS solution (22.5

mL) for 17 min to uniformly coat the entire silica surface with amine functionalities. Negative
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controls (NC) were the as-received silica plates soaked in ethanol and dried. In another

experiment, designed to show control over analyte retention, two silica plates (10 cm) were

activated and soaked in APTEOS solution, one with half the volume of APTEOS required to

cover the entire length and another with one-fourth the volume. This procedure produced

modified TLC plates where the aminopropyl bonded phase covered one-half and one-fourth the

length of the plate, respectively. Phenyl and cyano gradients on TLC plates were prepared in a

manner similar to the amine gradient except for the preparation of silane solution. As described

earlier, amine groups in APTEOS self-catalyzes and increases the rate of hydrolysis and

condensation.  In the case of PTMOS and CNTEOS this was done using a two-step method:  acid

was first added to hydrolyze the silanes followed by base to increase condensation. Hence, these

silane solutions were prepared by first stirring the mixture of ethanol : silane : 0.05 M HCl  in the

volume ratio 10 : 1 : 0.5 mL for 30 minutes to hydrolyze the silane followed by the addition of

0.75 mL of 0.05 M NaOH and continued stirring for additional 1 hr prior to infusion.

6.3.3.  Stationary Phase Characterization

To characterize the profile of amine groups on the surface of the TLC plates, a simple

method was developed using ninhydrin as a universal reagent for the identification of

amines/amino acids.113 When treated with ninhydrin, primary amines will react and form a

purple-colored dye. The ninhydrin solution was prepared by dissolving 1.5 g of ninhydrin

(Sigma Aldrich, ACS reagent) in 25 mL of 1-butanol and 3 mL of acetic acid and then diluting to

100 mL with 1-butanol. This solution was spotted every 6 mm with a ~ 3 mm spot size along the

length of the HP-TLC plates (gradient, PC and NC). After spotting, the plate was allowed to dry

for ~8 min and then photographed using a digital camera. In each case, the procedure was

performed three times to evaluate reproducibility. The digital image was loaded into an
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enhanced version of the TLC Analyzer software114 to obtain a plot of color intensity versus

distance.

6.3.4.  Separation

Gradient TLC plates were spotted with the mixtures to be separated on either the low

amine or high amine end, as indicated in the text.  In the first part of this work, the mixture of

four weak acids and bases (BA, ABA, APh and APy) was dissolved in methanol and

subsequently spotted onto the plates. The concentration of each analyte was 2.0 mg/mL, except

for APy, which was 5.0 mg/mL. Separation was performed under both basic (methylene

chloride:methanol:triethylamine, 90:10:0.5 v/v) and acidic (methylene chloride:methanol:acetic

acid, 90:10:0.5 v/v) mobile phase conditions.  The interior of the development chamber was

surrounded with saturation pads and allowed to equilibrate prior to the addition of the TLC plate.

The solvent front typically traveled ~ 8.5 cm up each TLC plate.  The spots on the TLC plates

were visualized under 254 nm UV radiation and photographs were taken using a digital camera.

The pictures were loaded into the TLC Analyzer software114 to extract the green-channel data (of

the red-green-blue color scale).  In the second part of this work, the mixture of the three over-

the-counter drugs (Ac, Dp and Dx) was spotted on the gradient plates. Each separation was

carried out using a mobile phase consisting of ethyl acetate:methanol:water (7:7:1.5) in a

solvent-saturated development chamber. In this case, the elution time was 18 min, during which

the solvent front moved ~ 6 cm up the TLC plate.  Afterwards, the TLC plates were dried under

atmospheric conditions for 5 min before being photographed under UV radiation and processed

using the TLC Analyzer software.114

6.4.  Results and Discussion

6.4.1. Characterization of gradient
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In prior work, we described how the method coined ‘controlled-rate infusion’ could be used

to prepare amine gradients on the surfaces of dimethylsilane-modified silicon wafers. In this

process, a reactive aminoalkoxysilane is slowly infused using a programmed syringe pump into a

glass vial containing an appropriately modified substrate, in the present case, a silica HP-TLC

plate. When the volume of solution reaches the top of the TLC plate, the plate is immediately

removed and rinsed. The extent of the gradient thus formed depends on the reactivity of the

aminoalkoxysilane with surface silanol groups and the rate at which the sol is infused into the

reaction vial.  The longer a particular plate region is exposed to the reactive precursor, the more

aminosilane is deposited, until, the point of saturation is reached. Aminoalkoxysilanes

(NH2RSi(OR’)3), which have unhydrolyzable amine groups, tend to self-catalyze and the rate of

hydrolysis and condensation with reactive silanol groups is relatively fast.73 Thus, by taking into

consideration the kinetics of reaction between aminosilanes and surface silanol groups, a

continuous gradient of controlled profile (i.e., steepness) and running from high to low amine

concentration can be formed from the bottom of the TLC plate to the top.

In this work, several different gradient TLC plates were prepared by changing the rate of

infusion:  some incorporated a very shallow amine gradient, others a steeper gradient that

reached saturation.  To confirm the presence of a gradient on the TLC plates and evaluate its

profile (shape), a new method had to be developed.  X-ray Photoelectron Spectroscopy, which

was used in our prior work (Chapters 3 and 4), could not be employed because the TLC plates

could not be sufficiently outgassed before analysis.  Our current method utilizes ninhydrin, a

universal color reagent for detection of amines.  The reaction between ninhydrin and the amine

forms a Schiff base followed by the formation of an intermediate amine which further condenses

with another molecule of ninhydrin to give a purple product217. Spotting the ninhydrin along the
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gradient creates the colored product on the TLC plate, the intensity of which is related to the

concentration of the surface amine groups.

Figure 6.1A (inset) shows a digital picture of a ninhydrin-spotted gradient (infusion rate =

80 mL/hr) TLC plate.  The spot intensity data were extracted from this image as well as images

from the NC and PC using the TLC Analyzer software.  Each spot in the digital photographs

appears as a peak whose intensity is related to the amine concentration on the plate at that

location. Figure 6.1b is the screen shot of DETLC analyzer in which the picture to be analyzed

was uploaded. The software scans a line drawn on the photograph to obtain red, green, blue, b/w

spectra across the scanned line. In the figure, the scanned line is on the ninhydrin spots across the

gradient plate and it can be observed that the black and white (b/w) scans show an increasing

trend of peak intensity from the low amine end to the high amine end of the gradient. In most

peaks, the peak apex shows a dip because of the concentration of purple color at the outer ring of

each spot. Hence, the peak intensity (height) was measured after smoothing the peaks. The

smoothing factor was same for all the spots on gradient and control plates. Figure 6.1a also

shows a plot of intensity (peak optical density) versus distance along the three samples (NC, PC,

Gradient). The absence of color formation on the NC plate reflects the absence of amine groups

(flat line with zero intensity).  The PC plate showed a near constant amount of amine across the

length of the substrate, consistent with a uniform aminopropyl bonded-phase. In the gradient,

the color intensity increased from the low amine end to the high amine end and saturation was

also observed, in concordance with our previously reported XPS results on Si wafers. This

colorimetric method, which is significantly simpler and less costly than XPS, confirms the

presence of a gradient in amine groups on the surface of the TLC plate.
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Figure 6.1a Plot of spot intensity after exposure to ninhydrin vs distance along the length of the
plate for PC (red), gradient (blue, infusion rate = 80 mL/hr), and NC (black). The error bars signify
±1σ. N=3.  Inset:  A digital photograph of the gradient TLC plate from which the intensity data
were extracted.  Chromatographic data for these TLC plates are shown in Figures 6.5 and 6.6.
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Figure 6.1B Screenshot of DETLC analyzer. The picture from Figure 6a is uploaded and ninhydrin
spots across the gradient plate were scanned. Below are the four spectra (red, green, blue and b/w).
The b/w spectra were used to make the gradient profile plots.

The shape of the gradient can easily be changed by changing the infusion rate and/or the

concentration of the aminoalkoxysilane in the reacting solution.  In this work, three different

infusion rates were used to create gradient TLC plates having different slopes.  Their profiles

were confirmed using the ninhydrin method. Figure 6.2 shows spot intensity plots for the three

gradient TLC plates, along with a positive and negative control. As the infusion rate increased

from 400 mL/hour to 1000 mL/hr, the slope of the gradient profile decreased in the manner

expected. In contrast to what was observed in Figure 6.1A, these gradients did not reach

saturation.  As shown in section 6.4.3 below, the ability to vary the steepness of the gradient

becomes valuable when the need exists to optimize retention and improve resolution.

Figure 6.2 Plot of spot intensity after exposure to ninhydrin as a function of distance along the
TLC plate for PC (red), NC (black), and gradient TLC plates. Gradient formation was accomplished
using an infusion rate of 400 mL/hr (green), 700 mL/hr (blue), and 1000 mL/hr (pink). The error
bars signify ±1σ.  N = 3.



www.manaraa.com

121

6.4.2  Separation of Weak Acids and Bases

A mixture containing four weak acids and bases (Benzoic acid (BA), 3-Aminobenzoic acid

(ABA), 2-Aminopyridine (APy) and 4-Aminophenol (APh), (Scheme 6.1) was used for initial

demonstration of stationary phase gradient separations.  This mixture was prepared in methanol

and spotted on an amine gradient TLC plate, a NC (regular silica TLC plate) and a PC (fully

amine modified TLC plate). The gradient TLC plates were prepared using an 80 mL/hr infusion

rate with a total time and volume of infusion of 17 min and 22.5 mL, respectively.

Scheme  6.1. Structures of acidic and basic compounds separated.

Gradient TLC plates were prepared in duplicate; on one plate, the sample was spotted on the

low amine end; on the other, the plate was spotted on the high amine end.  In the former, the

analytes will experience a gradient in which the surface amine concentration gradually increases

during the course of separation whereas in the latter, the analytes will encounter a gradient

stationary phase where the amine concentration decreases. In case of NC and PC, analyte

spotting location does not matter since both NC and PC are uniform across its length (Figure

6.3).
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The mobile phase used for each separation was methylene chloride:methanol:acetic acid

(90:10:0.5). On each plate (NC, PC and gradient), the compounds to be separated were spotted in

three separate lanes.  The mixture of four compounds was spotted in one, while the pure

compounds were spotted in pairs (BA and ABA, APy and APh) alongside the mixture in the

other two lanes for identification purposes. Once developed, the TLC plate was dried under

atmospheric conditions for 5 to 10 min before visualization under UV radiation (254 nm).

Digital photographs taken of the TLC plates consisted of dark spots on a bright green

background.

The image was scanned using the TLC Analyzer software,114 which extracts the red, green

and blue channels for color images.   When plotted from the origin (where the mixture is spotted)

to the solvent front, the green channel data provides a TLC chromatogram as all of the analytes

quench the green fluorescence from the HP-TLC plates. The image of four plates (NC, PC, Gb

Figure 6.3. Spotting location on gradient and control plates. Ga is gradient where
analyte mixture was spotted on low amine end and Gb is gradient in which analyte
mixture was spotted on the high amine end.
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and Ga) under UV light (254 nm) are shown in Figure 6.4a in which the separation was

performed in 3 separate lanes; In each of the plates, it can be observed that in the first lane, 2

basic compounds were eluted; the second lane shows the elution of two acidic compounds and

third lane is of all four compounds. For clarity, in the remaining part of this chapter, only the

chromatogram obtained from the mixture of all four compounds is shown in all cases.

Figure 6.4 B shows the screenshot from DETLC analyzer software when the scanning of

gradient TLC plates was performed on the third lane where the mixture of all the four

compounds was spotted and separated. The screenshot shows the image and the four

chromatograms (red, green, blue and b/w) generated for the scan along the gradient Ga. For the

Figure 6.4A Image of four TLC plates (NC, PC, Gb and Ga) where the separation of two
basic (lane 1), two acidic (lane 2) and all 4 component (lane 3) separation was performed
under acidic mobile phase conditions. The blue lines in the NC plate indicated the three
lanes. The picture was taken under UV light (254 nm).
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separation of four components in the gradient TLC plate, four peaks were clearly observed in the

green chromatogram.

Figure 6.5 shows the TLC chromatograms obtained from gradients and control plates; Table

6.1 reports retention factors (Rf) and resolution (Rs) between neighboring peaks. The latter was

calculated using Eqn (6.1) where d is the center-to-center distance between spots and W is the

base width of the spots measured from the densitometric scan. For the unresolved peaks, the full

Figure 6.4B Screenshot from DETLC analyzer. The top of the figure is the image of TLC
plates (NC, PC, Gb and Ga). Below are the red, blue, green and b/w chromatograms for the
corresponding line scan in the Gradient (Ga) image where the separation of four compounds
occurred.
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width of the base of the overlapped peaks was used as W1 + W2 in this calculation.  Plate counts

were not calculated because of the uncertainties associated with the initial spot width.

  2/21 WW

d
Rs 
 (6.1)

Figure 6.5 TLC chromatograms for the negative control (NC), positive control (PC), and the
gradient TLC plates (Ga, Gb) where the mixture (benzoic acid (BA), 3-aminobenzoic acid
(ABA), 2-aminopyridine (APy) and 4-aminophenol (APh)) was spotted on the high amine end
(Gb) and the low amine end (Ga). The dots in each plot represent the point where the analyte
mixture was spotted.  Rectangular bars at the top of each plot represent the amine density (dark
brown for high amine) along the length of the gradient. Mobile phase: Methylene
chloride:methanol:acetic acid (90:10:0.5).
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Figures 6.5 Ga and Gb are the same gradients except in Figure 6.5 Ga, the analyte mixture

was spotted on the low amine end whereas in Figure 6.5 Gb, it was spotted on the high amine

end.  Figures 6.5 PC and NC depict the separations on positive and negative control plates,

respectively. On the NC plate under acidic mobile phase conditions, only two peaks were

observed.  Compounds with carboxylic acid groups (BA and ABA) moved but remained

overlapped, as was also the case for APh and APy.  Clearly, the use of an acidic mobile phase

and an as-received normal phase TLC plate does not allow for the separation of this mixture with

this mobile phase. On the uniformly amine modified TLC plate (Figure 6.5 PC), substances BA

and ABA hardly moved from the origin because of the strong interaction between their

carboxylic acid functional groups and the amine on the stationary phase. Again complete

separation of the mixture of four compounds was not observed; only 3 peaks were observed.

Very different results were obtained on the gradient plates. As expected, the direction of the

gradient significantly influenced the separation. When the samples were spotted on the low

amine end of the gradient (Figure 6.5 Ga), all four substances moved appropriately (0 < Rf < 1)

Table 6.1 Chromatographic parameters (retention factor (Rf) and resolution (Rs)) obtained
for the TLC plates in Figure 6.5 (Acidic mobile phase). Benzoic acid (BA), 3-aminobenzoic
acid (ABA), 2-aminopyridine (APy) and 4-aminophenol (APh) are the analytes.
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and were resolved (Rs > 1).  These data show that ABA and BA traveled further than they did on

the PC because of the interactions with the stationary phase were lessened due to the lower

concentration of the amine groups on the surface but less than they did on the NC because some

amine was still present.  APh was retained in a similar fashion on the different plates while APy

was slightly less retained relative to the NC but slightly more relative to the PC. The low amine

concentration at the beginning of the plate enables the first two compounds (BA, ABA) to

separate (whereas they don’t on a fully aminated surface, PC) while the gradually increasing

amine allows the other two (APh, APy) to separate (whereas they don’t on the silica only

surface, NC). When the mixture is spotted on the high amine end, the separation looks similar to

that observed on the positive control (Figure 6.5 Gb). ABA and BA, for example, are not

resolved and hardly move from the origin (i.e., each has an Rf near 0) due to strong interactions

with the stationary phase.  The high density of amine groups at the origin obviously limits the

distance the more acidic substances can travel and thus be able to be separated.
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Figure 6.6. TLC chromatograms for the negative control (NC), positive control (PC), and
gradient TLC plates (Ga, Gb) where the mixture (benzoic acid (BA), 3-aminobenzoic acid
(ABA), 2-aminopyridine (APy) and 4-aminophenol (APh)) was spotted on the high amine end
(Gb) and low amine end (Ga). The dots in each plot represent the point where the analyte
mixture was spotted.  Rectangular bars at the top of each plot represent the amine density (dark
brown for high amine) along the length of the gradient. Mobile phase: Methylene
chloride:methanol:triethylamine (90:10:0.5).

The separation of a mixture containing weak acids and bases also is expected to depend on

the pH of the mobile phase. To evaluate the separation of this mixture on the gradient TLC

plates, using a more basic mobile phase, acetic acid was replaced by triethylamine in the mobile

phase. Figure 6.6 shows chromatograms obtained for the separation of the same mixture under

these new conditions. Table 6.2 provides Rf values for all the spots along with the resolution (Rs)

between neighboring peaks. As can be seen, there are slight differences in the separation of the

four compounds with a basic mobile phase.  Most significantly, on the gradient plate (Ga), the

elution order of BA and ABA changed from that observed under the acidic mobile phase.  On the

as-received silica TLC plate (Figure 6.6 NC), all four substances moved along the plate as

Table 6.2 Chromatographic parameters (retention factor (Rf) and resolution (Rs)) obtained
for the TLC plates in Figure 6.6 (basic mobile phase). Benzoic acid (BA), 3-aminobenzoic
acid (ABA), 2-aminopyridine (APy) and 4-aminophenol (APh) are the analytes.
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expected, but the weak acids (BA and ABA) were better separated under the basic mobile phase

because of stronger interactions, whereas the weak bases (APh and APy) overlapped.  On the

uniformly modified plate (PC), the more basic substances, APh and APy, moved and separated

while the weak acids remained close to the origin.  Again, when a gradient stationary phase was

employed, the direction of the gradient significantly influenced the separation.  Upon spotting

the mixture on the low amine end (Ga), all four compounds were well separated.  Again, the low

density of amine groups at the beginning of the plate enables the first two compounds (BA,

ABA) to separate as the interactions between the carboxylic acid group on the analyte and the

amine groups on the stationary phase are lessened relative to that taking place on the PC. When

spotting on the high amine end (Gb), the separation resembled that observed on the PC with

ABA and BA overlapping. Again, the strong interactions between the carboxylic groups on ABA

and BA and the initially high density of amine groups at the origin limit their movement.

Collectively, these experiments indicate that the gradient TLC plates are less sensitive to mobile

phase pH relative to as-received normal phase TLC plates and, most importantly, they

demonstrate that by altering the degree of interaction between the analyte and the stationary

phase during the course of a separation (as is done using gradient elution) a working separation

results.

To verify that gradient formation was the result of controlled-rate infusion and could not be

accomplished by the simple wicking of the aminosilane modifier up the TLC plate, an additional

control experiment was performed. In this experiment, the TLC plate was placed in the

deposition chamber and the aminosilane solution was allowed to wick from bottom to top via

capillary action alone (in contrast to infusion).  The wicking time was similar to the infusion time

(22 min vs 17 min).  When the solvent front reached the top, the plate was removed, rinsed with
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ethanol and dried. It was then spotted with the mixture described above and separation under the

same mobile phase conditions proceeded. When visualized under UV radiation, the locations of

the spots were very similar to those obtained on a regular, as-received, silica HP-TLC plate

(NC). Indeed, when this control plate was spotted with ninhydrin, amine was only detected on

the bottom of the plate where the plate was exposed to APTEOS solution. This result

demonstrates that gradient formation in “controlled-rate infusion” relies upon transport of

aminosilane to the TLC plate surface from bulk solution. The wicking method likely fails to

produce a detectable gradient because the aminosilane is quickly depleted from the thin film

transported up the plate by reaction with the silica surface.

6.4.3.  Separation of Over-the-Counter Drugs

Applications of chromatographic separations for pharmaceutical preparations are very

common and widely reported.218-220 To demonstrate the usefulness of these gradient TLC plates

in such applications, as well as to demonstrate the ability to control retention, over-the-counter

tablets of three common drugs were separated:  those that contain either acetaminophen (AC),

doxylamine succinate (Dx), and diphenhydramine (Dp).  Two of the three drugs are structurally

similar to each other (Scheme 6.2). The drugs were extracted from tablets, separated on the

gradient and control TLC plates and visualized with UV radiation, as described earlier.

Scheme 6.2.   Structures of over-the-counter drugs separated.

Ac DpDx
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Once again, individual extract solutions were run alongside the 3-component mixture on the

TLC plate. A representative image was shown in Figure 6.7 containing three gradient-TLC plates

prepared at three different infusion rates (1000 mL/hr, 700 mL/hr and 400 mL/hr). Though each

plate contains 3 different lanes for identification of individual component, only the data for the

mixture is shown for clarity.

Figure 6.8 shows the TLC image of gradient prepared with three different infusion rates to

form different profiles. In each plate, the top lane is the elution of all three components. Figure

6.8 shows the corresponding chromatograms depicting the separation of Dx, Dp and Ac on three

gradient TLC plates and two control plates. Table 6.3 provides Rf values for all the spots along

with the resolution (Rs) between neighboring peaks. On the as-received TLC plate (NC), Dx

hardly moved from the point of spotting due to a strong interaction with the silica gel stationary

phase relative to the mobile phase. Dp moves some distance, indicating it has greater affinity for

the mobile phase relative to the stationary phase, while Ac, which has the greatest affinity for the

mobile phase (on all the plates) and moves the most.  While the Rs values are good, the Rf factor

Figure 6.7. Image of gradient-TLC plates under UV light after the separation. Each plate has three
lanes in which the two bottom lanes show elution of the individual components (Dx and Dp). Only
the top lane on each plate shows the separation of all three drug compounds. Mobile phase: Ethyl
acetate: methanol:water (7:7:1.5).
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for Dx is smaller than would normally be preferred. While resolution of all compounds is

important, achieving proper retention factors is also important.

Figure 6.8. TLC chromatograms for the separation of doxylamine succinate (Dx),
diphenhydramine hydrochloride (Dp) and acetaminophen (Ac) on a negative control (NC),
a positive control (PC) and three gradient TLC plates formed using infusion rates of 1000
mL/hr, 700 mL/hr, and 400 mL/hr.  The samples were spotted on the high amine end (at
0). Mobile phase: Ethyl acetate: methanol:water (7:7:1.5).
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The Rf factor for Dx (and Dp) can be changed via the addition of amine groups to the

surface of the stationary phases, while Ac retention remains relatively unaffected. The addition

of the amine groups on the stationary phase decreases the degree at which Dx and Dp interact

with the SiOH stationary phase. When the TLC plate was uniformly modified with amine groups

such that the surface was saturated or nearly-saturated, the Rf factors for Dx and Dp increased

significantly and nearly overlapped with Ac (Figure 6.8). In this case, all three compounds are

spending too much time in the mobile phase and are not being sufficiently retained on the

stationary phase.  The key to the separation of this mixture is to have some amine groups in the

stationary phase, but not too many. It can be seen in Figure 6.8 (and Table 6.3), that the

individual Rf and Rs values for Dx and Dp, in particular, strongly depend on the slope of the

gradient profile.  The separation of Dx, Dp and Ac improved as the rate of infusion increased

from 400 mL/hr (total infusion time = 4 min) to a significantly faster infusion rate of 1000 mL/hr

(total infusion time = 1.35 min).  The best separation defined in terms of both retention factor

and resolution for this drug sample was obtained on the TLC plates that incorporated a very

Table 6.3 Chromatographic parameters (retention factor (Rf) and resolution (Rs)) obtained for
the TLC plates in Figure 6.8 (Drug mixture). Doxylaminesuccinate (Dx), diphenhydramine
(Dp), acetaminophen (Ac) are the analytes.
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shallow gradient. Thus, the significance of gradient steepness on separation was illustrated by

simple over-the-counter drug mixture.

6.4.4.  Preparation of other bonded-phase gradients

As mentioned earlier, CRI was also used to prepare gradients in other bonded phases

such as phenyl and cyano groups. In Figure 6.9, a phenyl gradient (G), negative (NC) and

positive control (PC) plates are shown under UV light (254 nm). The NC plate shows only the

green fluorescence, as it does not contain any phenyl groups and the PC plate shows uniform

quenching as it is uniformly modified with phenyl groups.

In the gradient plate, the quenching gradually increases from low phenyl to high phenyl end,

which confirms the presence of a gradient in phenyl group density along the TLC plate.  A

gradient in CN was also made using a similar procedure and characterized using FTIR

microscope (reflectance mode).  Figure 6.10 shows a representative FTIR spectra of a CNTEOS

modified TLC plate acquired with a 150 μm aperture averaged with 300 scans. In this case, the

Figure 6.9. Phenyltrimethoxysilane (PTMOS) structure and TLC plates modified with PTMOS.
Gradient (G) prepared by CRI using a solution containing PTMOS to form gradient that
visualized under UV light (254 nm). Control plates are also shown for comparison (NC & PC).
The red arrow on the gradient shows the direction of increasing intensity of quenching due to the
presence of phenyl gradient.
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background was collected from a regular silica plate. Other than the CN stretch at 2250 cm-1 and

the CH stretch at 2950 cm-1, no significant peaks can be ascertained from the spectrum. The FT-

IR spectra scans were run with automatic atmospheric correction to avoid atmospheric water and

CO2 peaks correction. A magnified view of the CN region of the spectrum along the length of the

gradient and a PC can be seen in Figure 6.11.

As can be seen in Figure 6.11, the intensity of the 2250 cm-1 peak (CN stretch) stays

approximately the same along the uniformly modified plate (Figure 6.11) but increases from top

to bottom for the gradient plates. The arrow indicates the direction of the gradient from low and

high cyano end. To better see the gradient, the area near the CN stretch was magnified.

Figure 6.10. Representative FT-IR spectra CN-TEOS modified TLC plates. A
regular silica TLC plate was used as the background.
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6.5 Summary

A simple, straight-forward, and inexpensive approach for the preparation of continuous

stationary-phase gradients for chemical separations has been described and its applicability to the

separation of mixtures demonstrated.  Controlled-rate infusion was used to prepare amine

gradients on HP-TLC plates and the shape of these gradients was established via the use of the

color reagent, ninhydrin.  The separation of a mixture of four aromatic weak acids and bases was

clearly improved on a gradient TLC plate relative to either an as-received, normal phase silica

gel plate or a fully-coated amine modified plate. By spotting the mixture on the low amine end of

the plate, all four compounds could be resolved, under the solvent system chosen for

development.  None of the other TLC plates tested resolved all four compounds. To further

explore the advantages of this approach, a mixture of three simple over-the-counter drugs was

separated on gradient TLC plates made using high infusion rates. Again, for the solvent system

chosen, separation was better on the gradient plates compared to control plates.  In contrast to the

separation of the mixture of acidic/basic aromatic compounds that worked best with a steep

gradient, separation of this mixture of drugs proved to be the best on plates with shallow

gradients. This gradient preparation approach is not just limited to prepare amine stationary

phase gradients. It can also be used to prepare phenyl and cyano bonded phase gradients. These

phases were characterized by a direct visualization method and FITR spectroscopic method,

respectively.

Figure 6.11. FT-IR spectra of gradient (G) and uniformly modified (PC) cyano plates. The CN
gradient was prepared by CRI using a solution of CNTEOS. The arrow in the gradient spectra
indicates the direction of the gradient from low to high cyano end.
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7. Fabrication of Surface Charge Density Gradients on Open-tubular Capillary and its

Characterization by Pulsed Streaming/Zeta Potential Measurements

7.1. Abstract

One of the most important potential applications of capillary gradients is in capillary iso-

electric focusing (CIEF) where the separation of proteins is accomplished on a pH gradient in a

capillary under the influence of applied potential.221 From the advent of CIEF, numerous

researchers have been working on gradient capillaries for electrophoretic and

electrochromatographic separations. Later, applications of such gradient capillaries were

widened for the separation of small molecules as well. In this work, a simple and rapid method is

reported for the preparation of continuous amine gradients on a silica capillary using controlled-

rate infusion (CRI). Since the amine groups exhibit a positive charge on the capillary surface,

zeta potential measurements along the gradient surface were used to visualize the gradient

profiles. The zeta potential values were obtained via streaming potential measurements on the

capillaries using 2 mM NaCl as electrolyte. Also, a change in the gradient steepness was

visualized through the zeta potential measurements along the gradient. X-ray photoelectron

spectroscopy was used to confirm that the presence of nitrogen groups on the surface. Surface

charge density gradients on  silica capillaries induced by aminopropyl groups will be highly

useful for open-tubular capillary chromatographic separation of mixtures with a range of pI

values such as peptides/proteins and also in small molecule separations with a wide range of pKa

values.
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7.2. Introduction

7.2.1 Types of capillary column

There are two main types of capillary columns for capillary chromatography:  packed and

open tubular. Packed columns are the capillaries filled with particulate materials typically silica

and silica based bonded-phase particles. Open tubular columns are the capillaries in which the

inner wall is coated with the stationary phase such as an octadecylsilica (ODS) moiety.  Another

sub-class of capillary columns is monolith columns. These columns have shown unique

advantages over packed columns, such as high permeability and separation efficiency, etc., and

are considered as new generation stationary phases.222-224 There have been tremendous

developments in the field of capillary chromatographic stationary phases in the past two decades

and few of the prominent developments have been covered in these reviews.224-226 Both packed

and open tubular (OT) columns have been equally applied for the separation of proteins and

small molecule separations. However, the preparation of OT columns is simple and straight-

forward when compared to packed columns.  Thus, this work is based on open tubular column

format.

7.2.2 Surface coating on open-tubular capillary column

Surface coatings on open tubular capillaries have been prepared in several different ways.226,

227 Direct chemical bonding, sol-gel derived coating and molecular imprinted polymer coating

are the few notable methods used to prepare stationary phases for capillary electrophoresis and

chromatography.226 Sol-gel derived coatings are promising because of the wide variety of

organosilanes that are available. The silanes used for these coatings form stable bonds and
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exhibit strong analyte-stationary phase interactions allowing for better separation. Although sol-

gel technology for the preparation of capillary stationary phases was introduced in the late

1980s,228-230 Colon and coworkers in 1995 simplified the sol-gel based coating procedure for OT

capillary column.196 Further development have been made by Malik and other researchers to

produce useful bonded phases such as octyl (C8),
231 tertiary ammonium bonded phase,232, 233

stearyl,234 and other bonded phases.235 Recently, Lu et al236 prepared chitosan-grafted-(β-

cyclodextrin) stationary phases using sol-gel techniques and these columns showed better

stability and separation of structural isomers. Similar to sol-gel based techniques, molecular

imprinted polymer (MIP) techniques have been widely used for capillary stationary phase

fabrication especially for chiral separations.237-240 Direct chemical bonding on an etched capillary

surface was introduced by Jorgenson et al in 1983 and then later developed by other research

groups.241, 242 Recently, chemically bonded reactive silanes such as aminosilanes on fused silica

capillaries have been used directly as a stationary phase243 and as well as derivatized with gold

nanoparticles244 and graphene oxide.245-247

In this work, the focus is on the formation of a continuous gradient stationary phase on

an open tubular capillary using a direct chemical bonding method that takes advantage of the fast

reactivity of aminoalkoxysilane on hydroxylated silica surfaces.  A surface chemical gradient on

an open tubular capillary is prepared for the first time and the length scale of the gradient shown

here is about 40 cm and it can be extended up to 100 cm as well. This is the maximum length

scale achieved for continuous gradients on a capillary so far.

7.2.3 Gradients on capillary column

There are mainly two different types of capillary gradients that have been reported so far:
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i) pH gradients on capillaries.

ii) Polymer/monolith based gradient capillary column.

pH gradients in capillary columns have become very popular for iso-electric focusing where

peptides and proteins are separated based on their isoelectric point (pI).221, 248 A recent review by

Koshel et al. discusses the development of capillary iso-electric focusing (CIEF) in detail.249

These gradients are actually gradients in pH.  Yang et al. immobilized carrier ampholytes (CAs)

based on their isoelectric point (pI) through gluteraldehyde links on a monolith capillary columns

which carries epoxy linkages. Carrier ampholytes are mixture containing various comopounds

used to form a gradient in isoelectric point (pI). Proteins with a wide range of pIs are separated

using the above pH gradient.250 Similarly ampholine, one type of carrier ampholyte was

immobilized on polyacrylamide based monolith column, as reported by Zhu and coworkers.251

This column was reported to have high mechanical and chemical stability. Separation of a

complex protein mixture from rat lung cancer cells was described using this column.

Other than isoelectric focusing (IEF) of proteins and peptides, gradients on capillary

columns have been prepared for small molecules separations as well. Copolymerization of

different composition of monomers to form a monolith gradient inside the capillary has been

accomplished using thermal and photo polymerization. Thermal polymerization of various

compositions of monomers by sequential filling produced a polymer monolith hydrophobicity

gradient. The separation of alkylbenzene derivatives was shown to prove the separation

efficiency of the gradients.252 Similarly, photo-initiated polymerization was used by Pucci et

al.253 and Currivan et al.99 for the preparation of stationary phase gradients on silica capillaries.

This was achieved by using a moving shutter and neutral density filter to control the irradiation
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time and UV light intensity respectively. Except for the photo-grafting method, all the above

methods can only produce only discontinuous gradients. This is mainly because of the

fabrication method which involves filling the polymerization reaction mixture of different

concentration to a specified length and polymerizing it.  Gradients in capillary columns was also

reported quite recently by varying the ratio of acidic and basic monomers in a polymerization

reaction.254 In this work, the mixture of monomers with increasing pH values were filled in the

previously amine-modified capillary and thermally polymerized to form pH gradient. The

separation of egg white proteins was demonstrated on this open-tubular pH gradient. This is also

considered to be a discontinuous gradient.

In the present work, CRI was used to form continuous amine gradients on  silica capillaries

and were visualized using streaming potential measurements. Also, the gradient profile has been

strategically varied using this approach. The application of such open tubular capillary gradients

is to act as continuous stationary phase gradients for open tubular capillary

electrochromatography (OTCEC). Gradients in OTCEC column will open a new dimension to

the OTCEC separation because of the following reasons,

i) Gradients in aminopropyl groups can act as a charge density gradient for applications

such as protein separation and also act as an effective chromatographic bonded phase for

small molecule separation when the analytes interact with the gradient. Separations

involving such gradients will trigger new interests in the field of separation.

ii) Since the amine group is reactive, it is always possible to covalently react with it and form

various other gradient bonded-phases, such as proteins, and even to attach nanoparticles

for separation purposes.
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Since this work involves the fabrication of stationary phase supports for OTCEC, the

following section provides a brief introduction.

7.2.4. Open tubular capillary electochromatography (OTCEC)

OTCEC is a separation technique using a micro open tubular column that combines the

attributes of HPLC and capillary electrophoresis. OTCEC is one of the modes of operation of CE

where the solute interacts with the stationary phase based on its electrophoretic mobility.255 In

OTCEC, the mobile phase movement is not pressure-driven but driven by the electroosmotic

flow (EOF). The applied electric field produces EOF, which has a flat-plug like flow profile.

This flat flow profile rather than a parabolic flow profile (Figure 7.1) lessens the band-

broadening and gives highly efficient peak separation.

Other than that, CEC has a few other advantages like rapid analysis times, low sample

volumes, low cost etc. For the past decade, OTCEC has found numerous applications in the

separation of a wide variety of compounds ranging from simple acidic-basic mixtures256 to

complex protein separations.226, 255, 257 Immobilized nanoparticles on silica capillaries for

OTCEC have also become popular for the separation of a range of compounds from polymeric

Figure 7.1. a) EOF and b) Pressure driven flow profiles

a) EOF flow profile (plug like) b) Pressure driven flow profile (Parabolic)
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hydrocarbons to peptides.226, 258-260 Preparation of stationary phase is the main step involved in

OTCEC for reproducible results. The sol-gel process is one of the simplest and most

reproducible preparation methods for OTCEC columns. Colon and coworkers first introduced

organosilanes for the preparation procedure. These workers incorporated octadecyl groups in the

glass film covalently attached to the inner walls of a silica capillary.196 Later, the same group and

a few other researchers were successful in preparing such organic-inorganic hybrid capillary

column for OTCEC.261-263

7.2.5. Gradient characterization on capillary column

The characterization of a chemical gradient on the surface of a capillary plays an equally

important role in gradient fabrication, especially for open-tubular and packed capillary columns.

Scanning electron microscopy is one method that has been to visualize gradient capillaries.250, 251,

254 Pucci et al used electron probe microanalysis to measure the sulfur content in a gradient

monolith along the capillaries to evaluate the gradient in sulfonic acid groups.253 A unique

characterization was reported by Currivan and coworkers called capacitively coupled contactless

conductivity detection.99 The conductivity responses along the gradient capillaries were used to

visualize the gradient profiles of capillary columns.

Characterization of gradient capillary columns is quite different than that of uniformly

coated capillaries because in gradient columns the whole gradient length needs to be studied

whereas representative segments can be visualized in the uniformly coated capillaries. Also,

chemical and functional gradients formed on micro-sized cylindrical surfaces are difficult to

visualize, unlike those on planar surfaces such as silicon wafers, glass substrates, TLC plates,

etc. The amount of silane that is deposited on the surface of the capillaries is relatively low
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compared to other types of surface gradients because the capillaries have small internal

diameters. The length of the gradient in a capillary is 5 to 10 times larger than on a planar

substrate, which is typically 10 cm.  The above factors preclude the use of conventional

techniques such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements for

the characterization of chemical gradients on capillaries.

In this work, the CRI approach was used to prepare a gradient in surface amine density on

the surface of a silica capillary that is 40 cm in length. Aminopropyl groups on surfaces will

exhibit a positive charge in acidic and neutral environments, and hence zeta potential

measurements along the capillary can be used to visualize the gradient profiles. Zeta potential

can be measured through one of the electrokinetic effects namely electrophoresis, electroosmosis

and streaming potential. Measurement of streaming potential has been used to determine the zeta

potential on various surfaces such as microfluidic system,264 membranes,265 disk-shaped

surface,266 etc. Alvarez et al. have developed a  system for the measurement of pulsed streaming

potentials and have used it for the  label-free detection of model analytes,267 to study adsorption

kinetics of proteins on polymer surfaces123 and, more importantly for the determination zeta

potential on charged surfaces.268 We have utilized the same pulsed-streaming potential system

for the determination of the zeta potential along the length of the gradient in aminopropyl groups.

The theory of streaming zeta potential measurements for the characterization of surface chemical

gradients was discussed in Chapter 2.

7.3 Experimental Section

7.3.1 Gradient preparation
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Aminopropyltriethoxysilane (APTEOS) was purchased from Acros Organics (99%), ethanol

from Pharmaco Aaper (200 proof absolute anhydrous) and potassium hydroxide from Fisher

Chemicals (97%). Fused silica capillaries (75 μm ID, 375 μm OD, Polymicro Technologies)

were cut to a length of 40 cm and activated by infusing fresh 1 M KOH through them at 5

μL/min for 40 minutes. After that, the capillary end was reversed and  the KOH infusion

continued for an additional 40 minutes. The capillary was then washed with deionized water

using an infusion rate of 30 μL/min from both the ends of the capillary for 1.5 hours each. Once

washing was over, the capillary was connected to a GC oven held at 150º C under flowing

nitrogen (20 cc/min) for 48 hours. Before gradient preparation, the capillary volume was

calculated by πr2l where r is the radius of the capillary and l is the length. For a 40 cm capillary,

the volume is 3.14 x 0.03752 mm2 x 400 mm = 1.77 μL. Then the infusion rate was calculated

based on the desired steepness of the gradient. The activated silica capillary was connected

through a high pressure union (IDEX P-720) to 5 μL syringe containing the freshly prepared

APTEOS solution with a given ratio of ethanol : silane: water. Typically the ratio is 1 : 0.05 :

0.005 and the infusion volume is ~2 μL. After infusion, the capillary was immediately flushed

with ethanol for 5 minutes by infusing at 50 μL/min infusion rate from the low amine end before

it was dried by pushing air through it. To measure the streaming potential along the length of the

gradient, the capillary was cut in such a way that 1.2 cm pieces were obtained at equal interval (4

cm) as shown in figure 7.2
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7.3.2. Measurement of Streaming Potential.

In initial experiments, a micro-channel type fabrication method was first developed to

measure the streaming potential of small segments of the 40 cm.  In this set-up, the ~1.5 cm

capillary segment was sandwiched between two 4 x 2 cm cyclic olefin copolymer (COC) plates

(Figure 7.3). Two holes on each polymer plate were drilled as shown in the figure. The streaming

potential measurements were performed on the sandwiched plates using phosphate buffers

ranging between pH 3 to 10. The amine gradient was supposed to give a gradient in isoelectric

point (pI) when it is plotted along the gradient length. However, this set up did not give

reproducible results and the pipette tip approach described below was developed as. The failure

of the polymer sealed capillary (micro-chip) might be due to partial electrolyte flow outside the

capillary. Moreover, fabrication of such chips was laborious when compared to the method that

is currently being used (Figure 7.4).

Figure 7.2. Infusion set-up for the gradient preparation on silica capillary by a
CRI method. After gradient preparation, the capillary was cut into 1.2 cm
segments and characterized via streaming potential measurements.
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To measure the streaming and zeta potentials in a small section of the capillary (~1.2 cm

segments were cut using an Agilent capillary cutter); the following procedure was performed

immediately after the small section was cut.  The capillary was sealed to the narrow end of a

microlitre pipette tip (20 – 200 μL, VWR) as shown in Figure 7.4A using a hot-glue gun. Once it

was confirmed that there was no leak in the seal, the sealed capillary was used for streaming

potential measurements. A schematic of the streaming potential measurement set-up is shown in

Figure (Inset in figure 7.4A).

Figure 7.3. Schematic shows the micro-chip made with a
1.5 cm modified silica capillary
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The outer end of the capillary from the tip was carefully inserted into a circular (doughnut

shaped) PDMS washer (0.5 cm ID, 1.5 cm OD), which was prepared by mixing the PDMS

Figure 7.4. (A) Schematic for streaming potential measurements on surface
amine gradient on capillary. Inset: Photograph of a capillary sealed to a micropipette
tip with glue. (B). Photograph of streaming potential measurement set-up.

A

B
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elastomer and curing agent in the ratio of 10:1 and baked at 100º C for 45 minutes. A thin

platinum wire electrode of length 1.5 cm and diameter of 0.5 mm was also inserted into the

PDMS washer. On the other end of the micropipette tip (wider end), a platinum wire (electrode)

and plastic tubing (1 mm ID, 15 cm length) was connected to withdraw the 2 mM NaCl solution

placed in a beaker. The pipette set-up was placed on a platform as shown above, and the hole in

PDMS washer was covered tightly with a plastic connector, which was connected to the vacuum

pump as shown in the Figure 7.4B. A pulsed pressure (1 sec on and 1 sec off) was created for

each cycle using the vacuum pump, and Labview software was used to measure the potential

difference during the pulse as described previously.267 Streaming potential and zeta potential

values from each segment of the capillary were obtained from an average of five cycles (about

10 sec) per run using Labview software. The streaming potential value from the five cycles is

averaged and converted into zeta potential using the viscosity of the solvent (η), the pressure

applied (P), the conductivity of the electrolyte (λ). The detail of this conversion is discussed

extensively in Section 2.5.

7.4 Results and Discussion

A surface charge density gradient on a 75 μm id open-tubular silica capillary was fabricated

by adopting a previously reported organoalkoxysilane based approach called controlled-rate

infusion (CRI). In this method, an aminosilane solution is gradually infused into a capillary at a

controlled rate where it reacts with surface bound Si-OH groups in a time-controlled fashion.

Gradient formation largely depends on the rate of infusion and the concentration of the

aminosilane in solution. The challenges associated with making a gradient on a 75 μm diameter

capillary column are (1) the small volumes needed and (2) characterizing  and quantifying the



www.manaraa.com

150

density of amine groups along a 40 cm length, and (3) the uniform generation of surface silanols

along 40 to 50 cm capillary length.  For example, the capillary volume was calculated for a 40

cm capillary and was found to be < 2 μL. Infusing such a low volume at a controlled rate for a

calculated amount of time is challenging. A small leak at any point of infusion will lead to large

errors.

The two important breakthroughs in this research are the formation of a continuous gradient

in charged groups on the surface of a 75 μm id open-tubular capillary using a straight-forward

approach, and the unique characterization method of the gradient profile along the length of the

capillary. Although streaming potential and zeta potential measurements have been used for the

evaluation of amine functionalities on glass substrates,151 silica particles269 and silica

capillaries,122 they have not been explored so far to characterize functionally graded surfaces.

In this work, an amine gradient was first prepared using a solution containing ethanol,

APTEOS, and water at a volume ratio of 20: 0.5: 0.005, respectively. Given an infusion rate of

0.1 μL/min, it took about 17 minutes to form the gradient. Once the gradient preparation was

complete, the modified capillary was characterized by plotting zeta potential versus distance

along the length of the capillary. Along with the gradient, a negative control capillary (NC) and a

positive control capillary (PC) were prepared and the zeta potentials were plotted as a function of

distance along the length of the 40 cm capillary.

Streaming potential measurements were made using the pulsed method described by the

Alavarez group.267 Figure 7.5 depicts a representative streaming potential plot of five pressure

pulses obtained on one segment of an amine modified capillary using 2 mM NaCl as the

electrolyte. The upward peak direction (i.e., positive streaming potential) indicates that the

surface under investigation contains predominantly positive charges. The height of the peak
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measures the streaming potential value. It is converted into zeta potential using the

Smoluchowsky equation as explained in Chapter 2 using the following variables i) η is the

viscosity of the solution in Pascals- second (Pa-s), ii) λ is the conductivity of the solution in

Siemens per meter (S/m), iii) ε is the dielectric constant of water,, iv) ε0 is dielectric permittivity

of vacuum, v) ∆E is streaming potential in volts and vi) P is pressure in Pa. Lab view software

calculates the average zeta potential of five cycles with the standard deviation.

where    η = 0.936x10-3Pa.s

εr = 79

ε0 = 8.85x 10-12 F/m

λ = 0.024 ± 0.001 S/m (exact value was measured each time using conductivity meter)

P = 65 x (1.333 x 103) Pa

ΔE = Streaming potential in V
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Figure 7.5. Representative streaming potential plot of a single run (five cycles) of a
1.2 cm amine modified capillary section.
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Figure 7.6A shows the streaming potential plots for the control (NC and PC) and the

gradient capillaries. As mentioned earlier, each run consists of 5 cycles (pressure pulses) and the

plot shown here is the overlay of 10 capillary segments along the control capillaries (each 4 cm

apart). As can be clearly observed from this figure, the streaming potential values are negative

for an activated silica capillary, since it contains mostly deprotonated silanol groups that are

responsible for the negative value. The PC exhibits a positive streaming and zeta potential

because of the positively charged amine groups.  In the gradient capillary, the streaming potential

varies from a low to high streaming potential values as a function of distance and the streaming

potential values for the control capillaries are almost same (< 10% variation) indicating the

capillaries are uniformly modified. For the gradient capillary, however, the positive zeta

potential value gradually increases from a lower to higher value for the capillary segments of low

amine end to the high amine end (Figure 7.6B). This clearly shows that the gradual variation in

positive surface charge density along the capillary as expected for a gradient surface.
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Figure 7.7 shows a plot of the average zeta potential vs distance along the length of the

capillary for the gradient and control samples (NC and PC) (~ 40 cm). Labview averages the

streaming potential from the five pulses.  A total of three runs for each 1.2 cm segment of

capillary was obtained.  The error bars shown at each position in each profile is ± 1 standard

deviation of three measurements (N = 3). This zeta potential profile plot on the negative control

and positive control samples clearly show that the surface is uniform along the capillary as

expected (Figure 7.7A). The negative zeta potential on silica capillary is due to the deprotonated

silanol groups while the positive value on uniformly coated amine capillary is due to protonated

amine groups. On the other hand, the gradient capillary prepared by CRI approach using ethanol

: aminosilane : water ratio of 20 : 1 : 0.1 exhibits a gradual variation of positive zeta potential

and positive charge density on the surface (Figure 7.6B). The infusion rate of silane solution for

this gradient preparation was 0.1 μL/min and total infusion time was ~ 17 minutes (Gradient 1).

Figure 7.6. Streaming potential plots (five cycles per run) along the control
capillaries (A) and a surface charge gradient capillary (B).

A

B
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The gradient profile on the capillary is similar to the shape of the amine gradient prepared

on a TLC plate by the same CRI method.74 Specifically, the surface amine density steeply

increases and then reaches almost saturation at the middle of the gradient profile. The shape or

profile of a surface chemical gradient is very important as previously described in Chapters 3, 4

and 6. In fact, one of the important attributes of CRI is the preparation of gradients with

strategically controlled gradient steepness by simply changing the rate of infusion or by changing

the concentration of aminosilane in the solution.74 In chromatography, this provides a means to

control retention time and selectivity factors.14 To validate the ability of CRI to prepare gradients

with different slopes on a capillary column, amine gradients have been prepared with two other

conditions. One with the same aminosilane concentration (Gradient 2) but at double the infusion

rate (0.2 μL/min) and another gradient by varying both the concentration and infusion rate (20 :

0.5 ethanol : silane ratio;  program infusion rate of 0.1 μL/min for 0.8 μL and 0.4 μL/min for the

remaining 0.8 μL.  The latter (Gradient 3) is expected to give two gradient profiles with different

steepness. Gradient 2 was repeated on a different day and the zeta potential values from the two

measurements (Gradient 2A and Gradient 2B) are plotted along the distance (Figure 7.8A). The

variation in zeta potential values between the two measurements might be due to the slight

variation in capillary position for measuremnts. Also the gradient within the 1.2 cm segments

was not taken for consideration and the zeta potential value corresponds to total charge in the 1.2

cm segment. This could also affect the reproducibility of the measurements. Figure 7.8B shows

the profile plot (zeta potential versus distance) of the all the above discussed gradients.

Figure 7.7. Zeta potential profile plot on the negative (NC) and positive (PC) control
capillaries (A) and a gradient capillary (B). Error bar at each position is ±1 standard
deviation of three measurements (N=3).
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As expected, the zeta potential profile of gradient 2 and gradient 3 in Figure 7.8 B shows a

shallower slope for the faster infusion rate.  In the case of Gradient 3, the slope of the gradient

profile changes mid-way down the capillary as a result of the infusion rate increasing by a factor

of four from 0.1 μL/min to 0.4 μL/min.  For the first 18 cm of the capillary, corresponding to the

top of the gradient, the zeta potential profile is very shallow as infusion was complete in ~2

minutes and the aminosilane had little time to react with the surface silanol groups. Near the

bottom the gradient, corresponding to the remaining 18 cm, the slope of the gradient is steeper

because the aminosilane had more time to react. This result is consistent with our previous work

on aminosilane gradients on planar substrates (e.g., a silicon wafer)74 where a change in the

infusion rate changes gradient steepness.  In the previous work, XPS was used to characterize the

Figure 7.8. (A) Zeta potential profile plot of surface charge density gradients
(Gradient 2) prepared on two different days. (B) Zeta potential profile plot of surface
charge density gradients prepared under three different conditions (Gradient 1,
Gradient 2 and Gradient 3) as described in the text.

A

B
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gradient profile; in this work, it was a new method (zeta potential).  This is a good sign that zeta

potential measurements properly describe the gradient shape/profile.

To further confirm the presence of nitrogen on the inner surface of the capillary, an XPS

experiment was undertaken.   In this experiment, a larger (500 μm inner diameter, 700 μm outer

diamter) capillary of 10 cm length was taken as the substrate and an amine gradient was formed

on the inner capillary walls  in a similar fashion with that of 75 μm ID capillary using ethanol :

silane : water 20 : 1 : 0.1.   After gradient formation,  the 10 cm length capillary was then cut in

to ~ 1.5 cm pieces. For each segment, the capillary was manually opened in such a way that the

inner wall of the capillary was exposed to the X-ray beam for analysis (Figure 7.9). The opened

capillaries were placed on the sample holder containing conducting tape and it was loaded into

the preparation chamber of XPS instrument for pump down. In the first instance, an X-ray beam

size of size of 200 μm was used because of the smaller inner diameter of the capillary. Because

N1s signal was not observed, the beam size was changed to 500 μm. Since it was difficult to

focus on the inner wall of these opened capillaries, only the low amine end and high amine end

was scanned and the N 1s area compared to that obtained on a negative control, activated glass

capillary (NC) of the same dimensions.
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Figure 7.10 shows a comparison of N1s spectra obtained at the top of the capillary, bottom

of the capillary and on a negative control.  As can be seen, the intensity of the N 1s peak at the

high amine end of the gradient was significantly larger than that obtained on the low amine end,

which in turn shows a slightly larger N 1s peak than the NC.  The N1s peak area of high amine

end is 5683 CPS eV and the low amine end is 1620 CPS eV. The small trace of N1s peak on the

negative control that does not have an amine coating is due to the adventitious nitrogen as

reported in our previous studies.74, 182 The N 1s peaks shown in the figure consist of two peaks

from 399 – 402 eV. The higher binding energy peaks is due to the protonated amine groups and

the intensity of the protonated amine peak is largely depend upon the sample treatment such as

exposing it to humid or acidic environment. In this case, the protonated is slightly high because

the sample has been exposed to atmosphere during sample preparation for XPS analysis. Overall,

the presence of surface amine groups on the open-tubular capillary column is evident based on

the above results in XPS analysis results.

Figure 7.9. Optical image of a capillary segment which is opened to expose the inner
wall of the capillary to the X-ray beam in the XPS spectrometer.
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7.5 Summary

Continuous gradients on the surface of open-tubular silica capillaries have not been explored

extensively as compared to gradients on packed or monolith capillaries. This is probably due to

the lack of techniques that are capable of preparing continuous gradient capillary columns with

reproducible gradient profiles. The controlled-rate infusion (CRI) approach is well-established

for preparing surface chemical gradients on substrates such as modified silicon wafers and planar

chromatographic stationary phases.  In this work, this approach was extended to prepare

continuous surface amine gradients on the inner walls of fused silica capillaries. The main

advantage of CRI approach is its straight-forward chemistry and experimental procedure, which

allow for gradient fabrication on substrates of various shapes and dimensions. This widens the

research areas in which the surface chemical gradients can be applied. Another important

attribute of CRI is its control over the gradient profile, which was previously demonstrated on

planar substrates. In this work, it is clearly evident that the gradient profile control in CRI is not

limited to planar substrates but can be made in capillaries as well.  A unique surface charge

density gradient characterization method was developed by measuring streaming/zeta potential

along the length of the gradient. This method can be modified and used for the characterization

of surface charge density gradients on other substrates such as micro-channels and membranes.

This research has opened up a simple and rapid way of preparing gradient films for open-tubular

capillary chromatographic separation of complex protein/peptide mixtures and also small

molecule mixtures that whose components vary in polarity and pKa.

Figure 7.10. N 1s spectra obtained at the top and bottom of the gradient
capillary and on a negative control.
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Chapter 8. Conclusion and Future work

8.1 Conclusion.

An elegant and reliable method was developed for the fabrication of surface chemical gradients

using organoalkoxysilanes. The controlled-rate infusion (CRI) approach described extensively in

this work mainly utilizes the reactivity of these silanes, which can be controlled by the

concentration, amount and type of catalyst and the amount of water in the silane solution.

Among the various organoalkoxysilanes commercially available, aminoalkoxysilanes have an

advantage of self-catalyzing the reaction with surface silanol groups through the basic amine

moiety. This research mainly concentrates on surface amine gradients, although the CRI

approach is capable of preparing gradients with other chemical functionalities such as nitrile,

phenyl and thiol groups. It is mainly because of its relatively fast reactivity and the widespread

application of amine modified surfaces to various fields in analytical and inorganic chemistry

that we have focused almost exclusively on amine gradients. CRI is extremely straight forward

in terms of its experimental design and also the chemistry involved. The CRI approach was first

evaluated on homogenous siloxane films spin cast on silicon wafers to form surface amine

gradients, and the gradient steepness was systematically varied by controlling the infusion rate

and concentration of silane. X-ray photoelectron spectroscopy (XPS) was used to characterize

the variation in amine group density along the length of the film by plotting the N1s area as a

function of distance from top to bottom of the substrate. Using a simple kinetic model based on

the first-order reaction kinetics of aminosilane with surface silanols, theoretical gradient profiles

were generated and the results were in concordant with the experimentally obtained profiles. A

new dimension to the gradient applications was shown by studying the reactivity of various
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substituted aminoalkoxysilanes including secondary, tertiary, and di- and tri-substituted amines.

This was accomplished by comparing the slope of the gradient profile since it is related to the

precursor’s reactivity. Also, the surface amine basicity of all the substituted amines were

reported by evaluating the ratio of the protonated and free amine groups on the surface. The

application of CRI to evaluate the reactivity of precursors itself is novel.

Fabrication of continuous gradients on stationary phases usually requires a sophisticated set-up

and a complex procedure. But CRI is capable of preparing continuous gradient stationary phases

for chromatographic separation in a simple one step procedure. As planar chromatographic

surfaces are relatively simple and inexpensive to work with, amine gradients were first prepared

on silica TLC plates. The gradient plates showed better separation for the chosen acidic/basic

component mixture. The significance of gradient steepness in controlling retention was shown

using an over-the-counter drug mixture. Metal amine complex formation through chelation was

studied on ligand density gradients prepared with ethylenediamine and diethylenetriamine

ligands. Such chelation gradients will be useful in separation science and to study the chelation

ability of metal ions on gradually varying ligand concentration.

The most remarkable benefit of CRI is that it is not limited to one particular type of substrate

such as rectangular planar surface but can be adapted to other geometries.  As shown in this

work, CRI can be used to form a surface chemical gradient in a fused silica capillary.  This type

of gradient can be used as a stationary phase for capillary electrophoresis and capillary

electrochromatography. Continuous gradients on open tubular capillaries were prepared for the

first time on a length scale of about 40 cm, the longest controllable gradient surface reported to
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date. The advent of the CRI approach proves the ability of a single method to form gradients on

various substrates applied to different fields of science.

8.2 Future work.

8.2.1 Dual bonded-phase gradient stationary phase.

Gradient stationary phase prepared with one silane precursor can be further taken for another

infusion with a different precursor to form dual bonded-phase gradients. For example, gradients

can be prepared from 3-aminopropyltriethoxysilane (APTEOS) and phenyltrimethoxysilane

(PTMOS) to form amine and phenyl gradients together on a single stationary phase support. In

Figure 8.1. Versatility of the controlled-rate infusion (CRI)
approach.
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this dual-bonded phase gradient stationary phase, two variations are possible:  the amine and

phenyl gradients can be in the same direction; the amine and phenyl gradients can be in opposite

directions. The presence and shape of the gradients can be characterized via ninhydrin (amine)

and the quenching of UV radiation at 254 nm (phenyl).  The next step would be to evaluate how

the gradient HP-TLC plates are able to separate a mixture of compounds which require both

bonded-phase variations. Separation of a mixture of water and fat soluble vitamins using this two

-component gradient is currently in progress.

8.2.1 Gradient on high pressure packed column.

Continuous gradient stationary phases on high performance liquid chromatography (HPLC)

column can be prepared using this approach. The challenging part would be infusing the silane

through a packed column of < 10 m silica gel particles, which will require a high-pressure

pump similar to a HPLC pump. Gradient profile control may also be limited since there is an

upper limit for such pumps (~ 400 bars). As a result, preparing a very shallow gradient using fast

infusion rates may not be possible. Because of the high surface area of the silica gel powder, a

high  concentrations of silane would likely be required. Infusion of such a high concentration of

silane would then require careful washing as the high-pressure pump can easily get blocked

because of solid particles formed from concentrated silane solution. Nevertheless, continuous

gradients prepared by this approach will be highly useful for separation of complex mixtures and

also in high-throughput method development by determining the choice stationary phase for a

particular mixture in one trial.
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